Advertisement

On the relative power of polynomials with real, rational, and integer coefficients in proofs of termination of rewriting

  • Salvador LucasEmail author
Article

Abstract

In the seventies, Manna and Ness, Lankford, and Dershowitz pionneered the use of polynomial interpretations with integer and real coefficients in proofs of termination of rewriting. More than twenty five years after these works were published, however, the absence of true examples in the literature has given rise to some doubts about the possible benefits of using polynomials with real or rational coefficients. In this paper we prove that there are, in fact, rewriting systems that can be proved polynomially terminating by using polynomial interpretations with (algebraic) real coefficients; however, the proof cannot be achieved if polynomials only contain rational coefficients. We prove a similar statement with respect to the use of rational coefficients versus integer coefficients.

Keywords

Polynomial orderings Program analysis Term rewriting Termination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Giesl, J.: Termination of Term Rewriting Using Dependency Pairs Theoretical Comp. Sci. 236, 133–178 (2000)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Basu, S., Pollack, R., Roy, M.-F.: On the Combinatorial and Algebraic Complexity of Quantifier Elimination. J. ACM 43(6), 1002–1045 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Beeson, M.J.: Foundations of Constructive Mathematics. Springer-Verlag, Berlin, 1985Google Scholar
  4. 4.
    Bonfante, G., Cichon, A., Marion, J.-Y., Touzet, H.: Complexity classes and rewrite systems with polynomial interpretation. In Gottlob, G., Grandjean, E., Seyr, K. (eds.) Proc. of 12th International Workshop on Computer Science Logic, CSL '98, LNCS 1584, 372–384 (1998)Google Scholar
  5. 5.
    Bonfante, G., Cichon, A., Marion, J.-Y., Touzet, H.: Algorithms with polynomial interpretation termination proof. J. Functional Prog. 11(1), 33–53 (2001)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bonfante, G., Marion, J.-Y., Moyen, J.Y.: Quasi-interpretations and Small Space Bounds. In: Giesl, J. (ed.) Proc. of 16th International Conference on Rewriting Techniques and Applications, RTA'05, LNCS 3467, 150–164 (2005)Google Scholar
  7. 7.
    Bochnak, J., Coste, M., Roy, M-F.: Real Algebraic Geometry. Springer-Verlag, Berlin, 1998Google Scholar
  8. 8.
    ben Cherifa, A., Lescanne, P.: Termination of rewriting systems by polynomial interpretations and its implementation. Science of Computer Programming 9(2), 137–160 (1987)CrossRefGoogle Scholar
  9. 9.
    Cichon, A., Lescanne, P.: Polynomial interpretations and the complexity of algorithms. In Kapur, D. (ed.) Proc. of 11th International Conference on Automated Deduction, CADE'92, LNAI 607, 139–147, Springer-Verlag, Berlin, 1992Google Scholar
  10. 10.
    Cox, D., Little, J., O'Shea, D.: Ideals, Varieties, and Algorithms. Springer-Verlag, Berlin, 1997Google Scholar
  11. 11.
    Cropper, N., Martin, U.: The Classification of Polynomial Orderings on Monadic Terms. Applicable Algebra in Engineering, Commun. Comput. 12, 197–226 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Contejean, E., Marché, C., Monate, B., Urbain, X.: Proving termination of rewriting with CiME. In Rubio, A. (ed.) Proc. of 6th International Workshop on Termination, WST'03, Technical Report DSIC II/15/03, Valencia, Spain, 2003. Available at http://cime.lri.fr pp 71–73
  13. 13.
    Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. Automated Reasoning, to appear, 2005Google Scholar
  14. 14.
    Collins, G.E.: Quantifier Elimination for Real Closed Fields by Cyllindrical Algebraic Decomposition. In Barkhage, H. (ed.) Proc. of 2nd GI Conference on Automata Theory and Formal Languages, LNCS 33, 134–183, Springer-Verlag, Berlin, 1975Google Scholar
  15. 15.
    Dauchet, M.: Simulation of Turing machines by a regular rewrite rule. Theor. Comp. Sci. 103(2), 409–420 (1992)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Dedekind, R.: Theory of Algebraic Integers. Cambridge University Press, 1996Google Scholar
  17. 17.
    Dershowitz, N.: A note on simplification orderings. Information Processing Letters 9(5), 212–215 (1979)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Dershowitz, N.: Personal communication. March 2004Google Scholar
  19. 19.
    Giesl, J.: Generating Polynomial Orderings for Termination Proofs. In Hsiang, J. (ed.) Proc. of 6th International Conference on Rewriting Techniques and Applications, RTA'95, LNCS 914, 426–431, Springer-Verlag, Berlin, 1995Google Scholar
  20. 20.
    Giesl, J.: Generating Polynomial Orderings for Termination Proofs. Technical Report IBN 95/23, Technische Hochschule Darmstadt, 1995 pp. 18Google Scholar
  21. 21.
    Giesl, J.: POLO - A System for Termination Proofs using Polynomial Orderings. Technical Report IBN 95/24, Technische Hochschule Darmstadt, 1995 pp. 27Google Scholar
  22. 22.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated Termination Proofs with AProVE. In van Oostrom, V. (ed.) Proc. of 15h International Conference on Rewriting Techniques and Applications, RTA'04, LNCS 3091, 210–220, Springer-Verlag, Berlin, 2004. Available at http://www-i2.informatik.rwth-aachen.de/AProVE
  23. 23.
    Hofbauer, D.: Termination Proofs by Context-Dependent Interpretations. In Middeldorp, A. (ed.) Proc. of 12th International Conference on Rewriting Techniques and Applications, RTA'01, LNCS 2051, 108–121 Springer-Verlag, Berlin, 2001Google Scholar
  24. 24.
    Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In N. Dershowitz, editor, Proc. of the 3rd International Conference on Rewriting Techniques and Applications, RTA'89, LNCS 355, 167–177 Springer-Verlag, Berlin, 1989Google Scholar
  25. 25.
    Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool. In Giesl, J (ed.) Proc. of 16th International Conference on Rewriting Techniques and Applications, RTA'05, LNCS 3467, 175–184, 2005. Available at http://cl2-informatik.uibk.ac.at.
  26. 26.
    Iturriaga, R.: Contributions to mechanical mathematics. PhD Thesis, Carnegie-Mellon University, Pittsburgh, PA, USA, 1967Google Scholar
  27. 27.
    Lang, S.: Algebra. Springer-Verlag, Berlin, 2004Google Scholar
  28. 28.
    Lankford, D.S.: On proving term rewriting systems are noetherian. Technical Report, Louisiana Technological University, Ruston, LA, 1979Google Scholar
  29. 29.
    Lucas, S. MU-TERM: A Tool for Proving Termination of Context-Sensitive Rewriting In van Oostrom, V. (ed.) Proc. of 15h International Conference on Rewriting Techniques and Applications, RTA'04, LNCS 3091 200–209, Springer-Verlag, Berlin, 2004. Available at http://www.dsic.upv.es/~slucas/csr/termination/muterm
  30. 30.
    Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications, 39(3):547–586, 2005Google Scholar
  31. 31.
    Manna, Z., Ness, S.: On the termination of Markov algorithms. In Proc. of the Third Hawaii International Conference on System Science, 1970 pp 789–792Google Scholar
  32. 32.
    Marion, J.Y.: Analysing the implicit complexity of programs. Information and Computation 183(1), 2–18 (2003)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Martin, U., Shand, D.: Invariants, Patterns and Weights for Ordering Terms. J. Symbolic Computation 29, 921–957 (2000)CrossRefzbMATHGoogle Scholar
  34. 34.
    Matijasevich, Y.: Enumerable sets are Diophantine. Soviet Mathematics (Dokladi) 11(2), 354–357 (1970)Google Scholar
  35. 35.
    Rouyer, J.: Calcul formel en géométrie algébrique réelle appliqué à la terminaison des systèmes de réécriture. Université de Nancy, I, PhD Thesis, 1991Google Scholar
  36. 36.
    Scott, E.A.: Weights for total division orderings on strings. Theor. Comp. Sci. 135(2), 345–359 (1994)CrossRefGoogle Scholar
  37. 37.
    Steinbach, J.: Generating Polynomial Orderings. Information Processing Letters 49, 85–93 (1994)CrossRefzbMATHGoogle Scholar
  38. 38.
    Steinbach, J.: Termination of Rewriting - Extensions, Comparison and Automatic Generation of Simplification Orderings. PhD Thesis. Fachbereich Informatik, Universität Kaiserslautern, Jan 1994Google Scholar
  39. 39.
    Tarski, A:. A Decision Method for Elementary Algebra and Geometry. Second Edition. University of California Press, Berkeley, 1951Google Scholar
  40. 40.
    TeReSe, editor, Term Rewriting Systems, Cambridge University Press, 2003Google Scholar
  41. 41.
    Thiemann, R., Giesl, J., Schneider-Kamp, P.: Improved Modular Termination Proofs Using Dependency Pairs. In Basin, D.A., Rusinowitch, M. (eds.) Proc. of 2nd International Joint Conference on Automated Reasoning, IJCAR'04, LNCS 3097, 75–90, Springer-Verlag, Berlin, 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.DSIC, Universidad Politécnica de ValenciaValenciaSpain

Personalised recommendations