Abstract
In this paper, we study linear control systems over Ore algebras. Within this mathematical framework, we can simultaneously deal with different classes of linear control systems such as time-varying systems of ordinary differential equations (ODEs), differential time-delay systems, underdetermined systems of partial differential equations (PDEs), multidimensional discrete systems, multidimensional convolutional codes, etc. We give effective algorithms which check whether or not a linear control system over some Ore algebra is controllable, parametrizable, flat or π-free.
This is a preview of subscription content, access via your institution.
References
Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. American Mathematical Society, Providence 1994
Becker, T., Weispfenning, V.: Gröbner Bases. A Computational Approach to Commutative Algebra. Springer, New York, 1993
Bender, C.M., Dunne, G.V., Mead, L.R.: Underdetermined systems of partial differential equations. J. of Math. Phys. 41, 6388–6398 (2000)
Bourbaki, N.: Algèbre, Chap. 10, Algèbre homologique. Masson, Paris, 1980
Chyzak, F.: Fonctions holonomes en calcul formel. PhD thesis. Ecole Polytechnique (27/05/1998)
Chyzak, F.: Mgfun project. http://algo.inria.fr/chyzak/mgfun.html
Chyzak, F., Salvy, B.: Non-commutative elimination in Ore algebras proves multivariate identities. J. Symbolic Computation 26, 187–227 (1998)
Chyzak, F., Quadrat, A., Robertz, D.: OreModules project.http://wwwb.math.rwth-aachen.de/OreModules
Chyzak, F., Quadrat, A., Robertz, D.: Linear control systems over Ore algebras: Effective algorithms for the computation of parametrizations. In: CDRom of the Workshop on Time-Delay Systems (TDS03), IFAC Workshop, INRIA Rocquencourt (France) (08-10/09/03)
Chyzak, F., Quadrat, A., Robertz, D.: OreModules: A symbolic package for the study of multidimensional linear systems. In: Proceedings of MTNS04, Leuven (Belgium) (05-09/07/04)
Cotroneo, T.: Algorithms in Behavioral Systems Theory. PhD thesis. University of Groningen (The Netherlands) (18/05/2001)
Fliess, M., Mounier, H.: Controllability and observability of linear delay systems: an algebraic approach. ESAIM COCV 3, 301–314 (1998)
Kredel, H.: Solvable Polynomial Rings. Shaker, Aachen, 1993
La Scala, R., Stillman, M.: Strategies for computing minimal free resolutions. J. Symbolic Computation 26, 409–431 (1998)
Landau, L., Lifchitz, E.: Physique théorique. Tome 2: Théorie des champs. MIR, Moscow, 1989
Le Vey, G.: Some remarks on solvability and various indices for implicit differential equations. Numer. Algorithms 19, 127–145 (1998)
McConnell, J. C., Robson, J. C.: Noncommutative Noetherian Rings. American Mathematical Society, Providence, 2000
Oberst, U.: Multidimensional constant linear systems. Acta Appl. Math. 20, 1–175 (1990)
Manitius, A.: Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulations. IEEE Trans. Autom. Contr. 29, 1058–1068 (1984)
Mounier, H.: Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques. PhD Thesis. University of Orsay, France, 1995
Mounier, H., Rudolph, J., Fliess, M., Rouchon, P.: Tracking control of a vibrating string with an interior mass viewed as delay system. ESAIM COCV 3, 315–321 (1998)
Pillai, H. K., Shankar, S.: A behavioral approach to control of distributed systems. SIAM J. Control & Optimization 37, 388–408 (1998)
Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory. A Behavioral Approach. TAM 26. Springer, New York, 1998
Pommaret, J.-F.: Dualité différentielle et applications. C. R. Acad. Sci. Paris, Série I 320, 1225–1230 (1995)
Pommaret, J.-F.: Partial Differential Control Theory. Kluwer, Dordrecht, 2001
Pommaret, J.-F., Quadrat, A.: Localization and parametrization of linear multidimensional control systems. Systems & Control Letters 37, 247–260 (1999)
Pommaret, J.-F., Quadrat, A.: Algebraic analysis of linear multidimensional control systems. IMA J. Control and Optimization 16, 275–297 (1999)
Pommaret, J.-F., Quadrat, A.: Equivalences of linear control systems. In: Proceedings of MTNS00, Perpignan (France), available at http://www-sop.inria.fr/cafe/Alban.Quadrat/index.html
Pommaret, J.-F., Quadrat, A.: A functorial approach to the behaviour of multidimensional control systems. Appl. Math. and Computer Science 13, 7–13 (2003)
Quadrat, A.: Analyse algébrique des systèmes de contrôle linéaires multidimensionnels. PhD thesis. Ecole Nationale des Ponts et Chaussées (France) (23/09/1999)
Quadrat, A.: Extended Bézout identities. In: Proceedings of ECC01, Porto (Portugal), available at http://www-sop.inria.fr/cafe/Alban.Quadrat/index.html
Quadrat, A., Robertz, D.: Parametrizing all solutions of uncontrollable multidimensional linear systems. In Proceedings of the 16th IFAC World Congress, Prague (Czech Republic) (04-08/07/05)
Quadrat, A., Robertz, D.: On the blowing-up of stably free behaviours. To appear in the proceedings of CDC-ECC05, Seville (Spain) (12-15/12/05)
Quadrat, A., Robertz, D.: Constructive computation of flat outputs of multidimensional linear systems. Submitted to MTNS06, Kyoto (Japan) (24-28/07/06)
Rocha, P.: Structure and Representation of 2-D systems. PhD thesis, University of Groningen (The Netherlands), 1990
Rotman, J.J.: An Introduction to Homological Algebra. Academic Press, New York, 1979
Salamon, D.: Control and Observation of Neutral Systems. Pitman, London, 1984
Seiler, W.M.: Involution analysis of the partial differential equations characterising Hamiltonian vector fields. J. Math. Phys. 44, 1173–1182 (2003)
Wood, J.: Modules and behaviours in nD systems theory. Multidimensional Systems and Signal Processing 11, 11–48 (2000)
Zerz, E.: Topics in Multidimensional Linear Systems Theory. Lecture Notes in Control and Information Sciences 256. Springer, London, 2000
Zerz, E.: An algebraic analysis approach to linear time-varying systems, to appear in IMA J. Mathematical Control & Information.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper is dedicated to the memory of our dear friend and colleague Manuel Bronstein.
The third author has been financially supported by the Control Training Site grant HPMT-CT-2001-00278 and the Deutsche Forschungsgemeinschaft during his stays at INRIA Sophia Antipolis.
Rights and permissions
About this article
Cite this article
Chyzak, F., Quadrat, A. & Robertz, D. Effective algorithms for parametrizing linear control systems over Ore algebras. AAECC 16, 319–376 (2005). https://doi.org/10.1007/s00200-005-0188-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00200-005-0188-6
Keywords
- Linear systems over Ore algebras
- Parametrization
- Flatness
- Constructive algorithms
- Non-commutative Gröbner bases
- Module theory
Mathematics Subject Classification (2000)
- 93C05
- 93B25
- 16E30
- 68W30
- 13P10