Abstract
We study a class of sequential non-revelation mechanisms in which hospitals make simultaneous take-it-or-leave-it offers to doctors. We prove that all pure strategy subgame perfect Nash equilibrium outcomes are stable, but the inclusion of contracts shrinks the set of equilibrium outcomes. Our analysis reveals the existence of an advantage in setting the terms of the relationship that is absent from the model without contracts. The mechanisms of this class are outcome equivalent and implement the set of stable allocations in subgame perfect Nash equilibrium when competitive rivalry is present. The equilibrium outcomes form a lattice when preferences are substitutable.
This is a preview of subscription content, access via your institution.
References
Abdulkadiroğlu, A., Sönmez, T.: Matching markets: theory and practice. In: Acemoğlu, D., Arellano, M., Dekel, E. (eds.) Advances in Economics and Econometrics, vol. 1. Cambridge University Press, Cambridge, pp. 3–47 (2013). https://doi.org/10.1017/CBO9781139060011.002
Alcalde, J.: Implementation of stable solutions to marriage problems. J. Econ. Theory 69, 240–254 (1996). https://doi.org/10.1006/jeth.1996.0050
Alcalde, J.: Beyond the Spanish MIR with consent: (Hidden) cooperation and coordination in matching. Games Econ. Behav. 110, 32–49 (2018). https://doi.org/10.1016/j.geb.2018.03.007
Alcalde, J., Pérez-Castrillo, D., Romero-Medina, A.: Hiring procedures to implement stable allocations. J. Econ. Theory 82, 469–480 (1998). https://doi.org/10.1006/jeth.1997.2447
Alcalde, J., Romero-Medina, A.: Simple mechanisms to implement the core of college admissions problems. Games Econ. Behav. 31, 294–302 (2000). https://doi.org/10.1006/game.1999.0743
Alcalde, J., Romero-Medina, A.: Sequential decisions in the college admissions problem. Econ. Lett. 86, 153–158 (2005). https://doi.org/10.1016/j.econlet.2004.06.013
Alva, S.: WARP and combinatorial choice. J. Econ. Theory 173, 320–333 (2018). https://doi.org/10.1016/j.jet.2017.11.007
Austen-Smith, D., Banks, J.S.: Positive Political Theory II: Strategy and Structure. The University of Michigan Press, Michigan (2005)
Baron, D., Kalai, E.: The simplest equilibrium of a majority-rule division game. J. Econ. Theory 61, 290–301 (1993). https://doi.org/10.1006/jeth.1993.1070
Blair, C.: The lattice structure of the set of stable matchings with multiple partners. Math. Oper. Res. 13, 619–628 (1988). https://doi.org/10.1287/moor.13.4.619
Crawford, V.P., Knoer, E.M.: Job matching with heterogeneous firms and workers. Econometrica 49, 437–450 (1981). https://doi.org/10.2307/1913320
Echenique, F., Oviedo, J.: A theory of stability in many-to-many matching markets. Theor. Econ. 1, 233–273 (2006)
Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–14 (1962). https://doi.org/10.2307/2312726
Fonseca-Mairena, M.H., Triossi, M.: Incentives and implementation in marriage markets with externalities. Econ. Lett. 185, Article 108688 (2019). https://doi.org/10.1016/j.econlet.2019.108688
Haake, C.J., Klaus, B.: Monotonicity and Nash implementation in matching markets with contracts. Econ. Theory 41, 393–410 (2009). https://doi.org/10.1007/s00199-008-0399-8
Haeringer, G., Wooders, M.: Decentralized job matching. Int. J. Game Theory 40, 1–28 (2011). https://doi.org/10.1007/s00182-009-0218-x
Hatfield, J.W., Kojima, F.: Substitutes and stability for matching with contracts. J. Econ. Theory 145, 1704–1723 (2010). https://doi.org/10.1016/j.jet.2010.01.007
Hatfield, J.W., Kominers, S.: Hidden substitutes. Working paper, Harvard Business School. https://www.hbs.edu/faculty/Pages/item.aspx?num=50617 (2014). Accessed 19 Jan 2022
Hatfield, J.W., Kominers, S.: Contract design and stability in many-to-many matching. Games Econ. Behav. 101, 78–97 (2017). https://doi.org/10.1016/j.geb.2016.01.002
Hatfield, J.W., Milgrom, P.R.: Matching with contracts. Am. Econ. Rev. 95, 913–935 (2005). https://doi.org/10.1257/0002828054825466
Hungerford, T.W.: Algebra. Springer, New York (1980)
Kara, T., Sönmez, T.: Implementation of college admission rules. Econ. Theory 9, 197–218 (1997). https://doi.org/10.1007/BF01213799.pdf
Kelso, A.S., Jr., Crawford, V.P.: Job matching, coalition formation, and gross substitutes. Econometrica 50, 1483–1504 (1982)
Klaus, B., Klijn, F.: Non-revelation mechanisms for many-to-many matching: equilibria versus stability. Games Econ. Behav. 104, 222–229 (2017). https://doi.org/10.1016/j.geb.2017.04.001
Klaus, B., Walzl, M.: Stable many-to-many matchings with contracts. J. Math. Econ. 45, 422–434 (2009). https://doi.org/10.1016/j.jmateco.2009.03.007
Kominers, S.: On the correspondence of contracts to salaries in (many-to-many) matching. Games Econ. Behav. 75, 984–989 (2012). https://doi.org/10.1016/j.geb.2011.12.002
Maschler, M., Solan, E., Zemir, S.: Game Theory. Cambridge University Press, Cambridge (2013)
Maskin, E., Sjöström, T.: Implementation theory. In: Arrow, K., Sen, A., Suzumura, K. (eds.) Handbook of Social Choice and Welfare, vol. 1. North Holland, Amsterdam, pp. 237–288 (2002). https://doi.org/10.1016/S1574-0110(02)80009-1
Milgrom, P., Roberts, J.: Rationalizability, learning and equilibrium in games with strategic complementarities. Econometrica 58, 1255–1277 (1990). https://doi.org/10.2307/2938316
Pepa Risma, E.: A deferred acceptance algorithm with contracts. J. Dyn. Games 2, 289–302 (2015). https://doi.org/10.3934/jdg.2015005
Romero-Medina, A., Triossi, M.: Non-revelation mechanisms in many-to-one markets. Games Econ. Behav. 87, 624–630 (2014). https://doi.org/10.1016/j.geb.2013.08.005
Roth, A.E.: Misrepresentation and stability in the marriage problem. J. Econ. Theory 34, 383–387 (1984). https://doi.org/10.1016/0022-0531(84)90152-2
Roth, A.E.: A natural experiment in the organization of entry level labor markets: regional markets for new physicians and surgeons in the UK. Am. Econ. Rev. 81, 415–440 (1991)
Roth, A.E., Sotomayor, M.: Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis. Cambridge University Press, Cambridge (1990). https://doi.org/10.1017/CCOL052139015X
Sönmez, T., Aygün, O.: Matching with contracts: comment. Am. Econ. Rev. 103, 2050–2051 (2013). https://doi.org/10.1257/aer.103.5.2050
Sotomayor, M.: Reaching the core of the marriage market through a non-revelation matching mechanism. Int. J. Game Theory 32, 241–251 (2003). https://doi.org/10.1007/s001820300156
Sotomayor, M.: Implementation in the many-to-many matching market. Games Econ. Behav. 46, 199–212 (2004). https://doi.org/10.1016/S0899-8256(03)00047-2
Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5, 285–309 (1955)
Triossi, M.: Hiring mechanisms, application costs and stability. Games Econ. Behav. 66, 566–575 (2009). https://doi.org/10.1016/j.geb.2008.04.019
Vives, X.: Nash equilibrium with strategic complementarities. J. Math. Econ. 19, 305–321 (1990). https://doi.org/10.1016/0304-4068(90)90005-T
Yenmez, M.B.: A college admissions clearinghouse. J. Econ. Theory 176, 859–885 (2018). https://doi.org/10.1016/j.jet.2018.05.010
Zavlin, D., Jubbal, K.T., Noé, J.G., Gansbacher, B.: A comparison of medical education in Germany and the United States: from applying to medical school to the beginnings of residency. Ger. Med. Sci. 15, Doc15 (2017). https://doi.org/10.3205/000256
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Romero-Medina, A., Triossi, M. Take-it-or-leave-it contracts in many-to-many matching markets. Econ Theory 75, 591–623 (2023). https://doi.org/10.1007/s00199-022-01417-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00199-022-01417-5
Keywords
- Contracts
- Many-to-many
- Sequential
- Take-it-or-leave-it
JEL Classification
- C72
- D72
- D78