Skip to main content
Log in

Consequentialism and dynamic consistency in updating ambiguous beliefs

  • Research Article
  • Published:
Economic Theory Aims and scope Submit manuscript

Abstract

By proposing the notions of upper-constrained dynamic consistency and lower-constrained dynamic consistency that are weaker axioms than dynamic consistency, this paper axiomatizes the Dempster–Shafer updating rule and naive Bayes’ updating rule within the framework of Choquet expected utility. Based on the notion of conditional comonotonicity, this paper also provides an axiomatization of consequentialism under Choquet expected utility. Furthermore, based on the idea of the mean-preserving rule, this paper provides a unified approach for distinguishing capacity updating rules (the Dempster–Shafer updating rule, naive Bayes’ updating rule, and Fagin–Halpern updating rule) according to the degree of dynamic consistency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout this paper, ambiguity and Knightian uncertainty are used interchangeably.

  2. For an axiomatization of CEU, see Schmeidler (1989). For an axiomatization of max-min expected utility (MEU), see Gilboa and Schmeidler (1989).

  3. For the definition of acts or lotteries, see Sect. 2.1.

  4. Gilboa and Schmeidler (1993), Pires (2002), and Eichberger et al. (2007) consider updating rules within the framework of CEU. Siniscalchi (2011) analyzes a general framework that does not restrict attention to any specific model, for example, CEU or MEU.

  5. Machina (1989) considers a broader class of non-expected utilities than Hanany and Klibanoff (2007) that analyze updating rules for MEU. Epstein and Le Breton (1993) show that under some assumptions, dynamic consistency for CEU implies that the DM’s beliefs must be additive.

  6. The notion of conditional comonotonicity is an extension of comonotonicity. See Sect. 3.

  7. Wang (2003) considers a complicated framework and provides a set of axioms that endogenize information filtration. Epstein and Schneider (2003) propose a set of axioms of conditional preferences within the framework of MEU. Ghirardato et al. (2008) and Hanany and Klibanoff (2007,2009) propose a set of axioms of conditional preferences under more general frameworks than MEU.

  8. Let Y be the set of all distributions over X with finite supports. Define a mixing operation as follows. For all \(y,y^{\prime }\in Y\) and all \( \alpha \in [0,1]\), \(\alpha y+(1-\alpha )y^{\prime }\in Y\) is given by \((\alpha y+(1-\alpha )y^{\prime })(x)=\alpha y(x)+(1-\alpha )y^{\prime }(x)\). Then, the set Y with this mixing operation is a mixture space. For example, see Gilboa (2009).

  9. Jouini and Napp (2004) propose the notion of conditionally comonotonic random variables with respect to some \(\sigma \)-algebra \({\mathcal {G}}\). However, our notion of conditional comonotonicity is different from that of Jouini and Napp (2004).

  10. A binary relation \(\succeq _T\) is a weak order if and only if \(\succ _T\) is asymmetric and negatively transitive, whereas a binary relation \(\succ _T\) is asymmetric if for all \(f,\,g\in L_{0}\), \(f\succ _T g\Rightarrow g\nsucc _T f\) and it is negatively transitive if for all \(f,\,g,\,h\in L_{0}\), \(f\nsucc _T g\) and \(g \nsucc _T h \Rightarrow f \nsucc _T h\). For example, see Kreps (1988, p.9).

  11. Ghirardato et al. (2004) show that if the above-mentioned five axioms are satisfied, then the DM’s preferences are represented by a monotonic, constant linear functional. For the definition of monotonicity and constant linearity of functionals, see Ghirardato et al. (2004, p.141).

  12. Let \({\mathcal {E}} \subseteq 2^{\Omega }\) be a collection of the subsets of \(\Omega \). Two functions on \(\Omega \) are \({\mathcal {E}}\)-cominimum if, for each \(E \in {\mathcal {E}}\), the set of minimizers of x on E and that of y on E have a common element. A functional I on the set of functions of \( \Omega \) is \({\mathcal {E}}\)-cominimum additive if \(I(x+y)=I(x)+I(y)\) whenever two functions x and y are \({\mathcal {E}}\)-cominimum. The notion of \({\mathcal {E}}\)-cominimum additivity was first proposed by Kajii et al. (2007).

  13. If the DM satisfies Axiom GS2, she is assumed to consider that the minimal (or the worst) outcome would have followed if an event A had not occurred. That is, she considers that the minimal outcome has occurred in \(A^{c}\). In this sense, the naive Bayes’ updating rule is an optimistic one.

  14. Recall that in Sect. 4, we showed that Axiom 8 and consequentialism imply Axiom GS1 and that Axiom 9 and consequentialism imply Axiom GS2.

  15. Note that Axiom GS2 implies Axiom 11 because \(f_S(\omega )=y_*\) on \(A^c\). Next, let \(f,g \in L_0\) with \(f|_A=g|_A\). Then, \((f,A;y_*,A^c) \sim (g,A;y_*,A^c)\) since \((f,A;y_*,A^c)=(g,A;y_*,A^c)\).

  16. Horie (2013) defines the set of binary acts \({\mathcal {F}}^2\) by \(\{(b,A;\omega ,A^c) | b, w \in X\, \text {such that}\,b \ge w\,\text {and}\, A \in 2^{\Omega }\}\).

  17. We acknowledge an anonymous reviewer who points out this condition.

References

  • Anscombe, F., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)

    Article  Google Scholar 

  • Asano, T., Kojima, H.: An axiomatization of choquet expected utility with cominimum independence. Theor. Decis. 78, 117–139 (2015)

    Article  Google Scholar 

  • Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  Google Scholar 

  • Dempster, A.P.: A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B 30, 205–232 (1968)

    Google Scholar 

  • Dominiak, A., Lefort, J.-P.: Unambiguous events and dynamic choquet preferences. Econ. Theory 46, 401–425 (2011)

    Article  Google Scholar 

  • Dominiak, A., Duersch, P., Lefort, J.-P.: A dynamic Ellsberg urn experiment. Games Econ. Behav. 75, 625–638 (2012)

    Article  Google Scholar 

  • Eichberger, J., Grant, S., Kelsey, D.: Updating choquet beliefs. J. Math. Econ. 43, 888–899 (2007)

    Article  Google Scholar 

  • Ellsberg, D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75, 643–669 (1961)

    Article  Google Scholar 

  • Epstein, L.G., Le Breton, M.: Dynamically consistent beliefs must be Bayesian. J. Econ. Theory 61, 1–22 (1993)

    Article  Google Scholar 

  • Epstein, L.G., Schneider, M.: Recursive multiple-priors. J. Econ. Theory 113, 1–31 (2003)

    Article  Google Scholar 

  • Fagin, R., Halpern, J.Y.: A new approach to updating beliefs. In: Bonissone, P.P., Henrion, M., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence, vol. 6, pp. 347–374. Springer, Berlin (1991)

    Google Scholar 

  • Ghirardato, P.: Rivisiting savage in a conditional world. Econ. Theory 20, 83–92 (2002)

    Article  Google Scholar 

  • Ghirardato, P., Maccheroni, F., Marinacci, M.: Differentiating ambiguity and ambiguity attitude. J. Econ. Theory 118, 133–173 (2004)

    Article  Google Scholar 

  • Ghirardato, P., Maccheroni, F., Marinacci, M.: Revealed ambiguity and its consequences: updating. In: Abdellaboui, M., Hey, J.D. (eds.) Advances in Decision Making under Risk and Uncertainty, pp. 3–18. Springer, Berlin (2008)

    Chapter  Google Scholar 

  • Gilboa, I.: Theory of Decision Under Uncertainty. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  • Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique priors. J. Math. Econ. 18, 141–153 (1989)

    Article  Google Scholar 

  • Gilboa, I., Schmeidler, D.: Updating ambiguous beliefs. J. Econ. Theory 59, 33–49 (1993)

    Article  Google Scholar 

  • Hammond, P.: Consequentialist foundations for expected utility. Theor. Decis. 25, 25–78 (1988)

    Article  Google Scholar 

  • Hammond, P.: Consistent plans, consequentialism, and expected utility. Econometrica 57, 1445–1449 (1989)

    Article  Google Scholar 

  • Hanany, E., Klibanoff, P.: Updating preferences with multiple priors. Theor. Econ. 2, 261–298 (2007)

    Google Scholar 

  • Hanany, E., Klibanoff, P.: Updating ambiguity averse preferences. B.E. J. Theor. Econ. 9(1 (Advances)), Article 37 (2009)

  • Horie, M.: Reexamination on updating choquet beliefs. J. Math. Econ. 49, 467–470 (2013)

    Article  Google Scholar 

  • Jouini, E., Napp, C.: Conditional comonotonicity. Decis. Econ. Finance 27, 153–166 (2004)

    Article  Google Scholar 

  • Kajii, A., Kojima, H., Ui, T.: Cominimum additive operators. J. Math. Econ. 43, 218–230 (2007)

    Article  Google Scholar 

  • Kreps, D.: Notes on the Theory of Choice. Westview Press, Boulder (1988)

    Google Scholar 

  • Machina, M.: Dynamic consistency and non-expected utility models of choice under uncertainty. J. Econ. Lit. 27, 1622–1668 (1989)

    Google Scholar 

  • Pires, C.P.: A rule for updating ambiguous beliefs. Theor. Decis. 53, 137–152 (2002)

    Article  Google Scholar 

  • Sarin, R., Wakker, P.: Dynamic choice and nonexpected utility. J. Risk Uncertain. 17, 87–119 (1998)

    Article  Google Scholar 

  • Savage, L.J.: The Foundation of Statistics. New York, Wiley (1954) (Second edition in 1972, Dover)

  • Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97, 255–261 (1986)

    Article  Google Scholar 

  • Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  Google Scholar 

  • Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Google Scholar 

  • Siniscalchi, M.: Dynamic choice under ambiguity. Theor. Econ. 6, 379–421 (2011)

    Article  Google Scholar 

  • Wang, T.: Conditional preferences and updating. J. Econ. Theory 108, 286–321 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge an anonymous reviewer and the co-editor, Mark Machina, whose comments improve this paper substantially. We are grateful to Youichiro Higashi, Hidetoshi Komiya, Hiroyuki Ozaki, Shin’ichi Suda, Masayuki Yao, and participants at Nagoya University, Keio University, and China Meeting of Econometric Society 2016 (Chengdu, China). This research is financially supported by the JSPS KAKENHI Grant Numbers 17K03806, 16K03558, 26380240, 25380239, and 23000001, and the Joint Research Program of KIER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Asano.

Appendices

Appendix

Definition 9

An operator \(I:{\mathbb {R}}^{\Omega } \rightarrow {\mathbb {R}}\) is comonotonic additive if \(I(x+y)=I(x)+I(y)\) whenever x and y are comonotonic.

It is well known that Choquet integrals satisfy comonotonic additivity. Furthermore, Schmeidler (1986) shows that if an operator \(I:{\mathbb {R}}^{\Omega }\rightarrow {\mathbb {R}}\) satisfies comonotonic additivity and monotonicity (i.e., \( x\ge y\) on \(\Omega \) implies \(I(x)\ge I(y)\) for all \(x,\,y\in {\mathbb {R}} ^{\Omega }\)), then I is a Choquet integral. As mentioned in Schmeidler (1986), if an operator \(I:{\mathbb {R}}^{\Omega }\rightarrow {\mathbb {R}}\) satisfies comonotonic additivity and monotonicity, then it satisfies positive homogeneity of degree 1 (that is, \(I(tx)=tI(x)\) for all \(t\ge 0\)). Moreover, it is shown that if an operator \(I:{\mathbb {R}} ^{\Omega }\rightarrow {\mathbb {R}}\) satisfies comonotonic additivity and positive homogeneity of degree 1, then I is a Choquet integral.

Definition 10

Choquet integrals with respect to a capacity v are said to be A-conditionally comonotonic additive if \(\int _{\Omega }(x+y)\hbox {d}v=\int _{\Omega }x\hbox {d}v+\int _{\Omega }y\hbox {d}v\) whenever x and y are A-conditionally comonotonic.

For A-conditional comonotonicity, we can show the following proposition.

Proposition 2

Let \(A \in {\mathcal {F}}\). Let v be a capacity such that \(v(S\cap A)=v(S)\) for any \(S \in {\mathcal {F}}\). Then, the Choquet integral of x with respect to such a capacity v, \(\int _{\Omega } x \hbox {d}v\), is A-conditionally comonotonic additive. That is, \(\int _{\Omega }(x+y)\hbox {d}v=\int _{\Omega }x\hbox {d}v+\int _{\Omega }y\hbox {d}v\) if x and y are A-conditionally comonotonic. Moreover, \(\int _{\Omega }x\hbox {d}v=\int _{A}x|_{A}\hbox {d}v|_{A}\) where \(x|_A\) and \(v|_A\) are the restriction of a function x and the restriction of a capacity v on a set A, respectively.

Proof

Let \(\langle \omega _{1},\omega _{2},\ldots ,\omega _{n} \rangle \) be a permutation of all the elements of \(\Omega \) satisfying \(x(\omega _{1})\ge x(\omega _{2})\ge \cdots \ge x(\omega _{n})\). Moreover, let \(A=\{\omega _{i(1)},\omega _{i(2)},\ldots , \omega _{i(k)}\}\), where \(\{i(1),i(2),\ldots ,i(k)\}\subseteq \{1,2,\ldots n\}\) and \(i(1)<i(2)<\cdots <i(k)\) for \(k=|A|\). Then,

$$\begin{aligned}&\int _{\Omega }x(\omega )\hbox {d}v \\&\quad =\sum _{1\le p\le n-1}(x(\omega _{p})-x(\omega _{p+1}))v(\{\omega _{1},\ldots ,\omega _{p}\})+x(\omega _{n})v(\Omega ) \\&\quad =\sum _{1\le p\le n-1}(x(\omega _{p})-x(\omega _{p+1}))v(\{\omega _{1},\ldots ,\omega _{p}\}\cap A)+x(\omega _{n})v(\Omega \cap A) \\&\quad =\sum _{1\le p<i(1)}(x(\omega _{p})-x(\omega _{p+1}))v(\emptyset ) \\&\qquad +\sum _{1\le q\le k-1}\left( \sum _{i(q)\le p<i(q+1)}(x(\omega _{p})-x(\omega _{p+1}))\right) v(\{\omega _{i(1)},\ldots ,\omega _{i(q)}\}) \\&\qquad +\left( \sum _{i(k)\le p\le n-1}(x(\omega _{p})-x(\omega _{p+1}))\right) v(A)+x(\omega _{n})v(A) \\&\quad =\sum _{1\le q\le k-1}(x(\omega _{i(q)})-x(\omega _{i(q+1)}))v(\{\omega _{i(1)},\ldots ,\omega _{i(q)}\})+x(\omega _{i(k)})v(A) \\&\quad =\int _{A}x|_A \hbox {d}v |_A. \end{aligned}$$

The last formula is the Choquet integral on A. Thus, the proposition is shown since the Choquet integral on A is A-conditionally comonotonic additive. \(\square \)

Proof of Proposition 1

Proof

Suppose that \(f|_A=g|_A\). Then, by Proposition 2,

$$\begin{aligned} \int _{\Omega } u(f)\hbox {d}v_A =\int _A u(f|_A)\hbox {d}v_A |_A =\int _A u(g|_A)\hbox {d}v_A |_A=\int _{\Omega } u(g)\hbox {d}v_A. \end{aligned}$$

Next, we show the converse. Note that \(1_S|_A=1_{S \cap A}|_A\). Thus, by consequentialism, \(1_S \sim _A 1_{S \cap A}\). So, \(v_A (S)=\int _{\Omega } 1_S d v_A=\int _{\Omega }1_{S \cap A} \hbox {d}v_A=v_A (S \cap A)\). \(\square \)

Proof of Theorem 2

Proof

(If part) We assume that there exist capacities v and \(v_A\) on \({\mathcal {F}}\) and a non-constant affine real-valued function u on Y such that for all f and g in \(L_{0}\), \(f\succeq _{A}g\Leftrightarrow \;\int _{\Omega }u(f(\omega ))\hbox {d}v_{A}(\omega )\ge \int _{\Omega }u(g(\omega ))\hbox {d}v_{A}(\omega )\), where it holds that \( v_{A}(S)=v_{A}(S\cap A)\) for all \(S \in {\mathcal {F}}\).

Clearly, Axiom 5 holds since u is non-constant. Axiom 6 holds since u does not depend on a certain event A. Axioms 13, and 4 hold by Theorem 1. Moreover, to show Axiom 7, note that \((y_{1},\{\omega \};y_{3},\Omega \backslash \{\omega \})=y_{1}1_{\{\omega \}}+y_{3}1_{\Omega \backslash \{\omega \}}\). Here, by \(\omega \in A^{c}\), \(1_{\{\omega \}}\) and \(1_{\Omega \backslash \{\omega \}}\) are A-conditionally comonotonic. Therefore, by Proposition 2, \(\int _{\Omega }u(y_{1},\{\omega \};y_{3},\Omega \backslash \{\omega \})\hbox {d}v_{A}=u(y_{1})v_{A}(\{\omega \})+u(y_{3})v_{A}(\Omega \backslash \{\omega \})\). Similarly, \(\int _{\Omega }u(y_{2},\{\omega \};y_{3},\Omega \backslash \{\omega \})\hbox {d}v_{A}=u(y_{2})v_{A}(\{\omega \})+u(y_{3})v_{A}(\Omega \backslash \{\omega \})\). On the other hand, \(v_{A}(\{\omega \})=v_{A}(\{\omega \}\cap A)=0\). Hence, Axiom 7 holds.

Finally, suppose that \(f,\,g,\,h\in L_{0}\) are pairwise A-conditionally comonotonic and that \(\int _{\Omega }u(f)\hbox {d}v_{A}\ge \int _{\Omega }u(g)\hbox {d}v_{A}\). Then,

$$\begin{aligned}&\int _{\Omega }u(\alpha f+(1-\alpha )h)\hbox {d}v_{A}-\int _{\Omega }u(\alpha g+(1-\alpha )h)\hbox {d}v_{A} \\&\quad =\alpha \int _{\Omega }u(f)\hbox {d}v_{A}+(1-\alpha )\int _{\Omega }u(h)\hbox {d}v_{A}-\alpha \int _{\Omega }u(g)\hbox {d}v_A-(1-\alpha )\int _{\Omega }u(h)\hbox {d}v_{A} \\&\quad =\alpha \left( \int _{\Omega }u(f)\hbox {d}v_{A}-\int _{\Omega }u(g)\hbox {d}v_{A} \right) \ge 0, \end{aligned}$$

from the A-conditionally comonotonic additivity of \(v_{A}\) shown in Proposition 2. Thus, Axiom 2 holds. \(\square \)

Now, by showing Lemmas 45, and 1114, we prove the only if part of Theorem 2. In the following, if the proofs for the unconditional preference \(\succeq \) are the same as those for the conditional preferences \(\succeq _A\), we omit them.

Proof of Lemma 4

Proof

If \(f,\,g\in L_{0}\) are comonotonic, then f and g are A-conditionally comonotonic. Thus, Axiom 2 implies Comonotonic Independence Axiom. By Theorem 1, Comonotonic Independence Axiom together with Axioms 134, 5 implies that there exist a capacity \(v_{A}\) on \({\mathcal {F}}\) and an affine real-valued function \(u_{A}\) on Y such that for all f and g in \(L_{0}\),

$$\begin{aligned} f\succeq _{A}g\Leftrightarrow \;\int _{\Omega }u_{A}(f(\omega ))\hbox {d}v_{A}(\omega )\ge \int _{\Omega }u_{A}(g(\omega ))\hbox {d}v_{A}(\omega ). \end{aligned}$$

Moreover, by Axiom 6, for A and \(\Omega \), we can show the existence of the common utility function u such that it represents \(\succeq \) and \(\succeq _A\) on \(L_{c}\) since u is determined by the preference on \(L_{c}\). Moreover, by Axiom 5, u is non-constant. \(\square \)

Proof of Lemma 5

Proof

We prove this lemma by mimicking the arguments of Schmeidler (1986,1989). Let \(I(a)=\int _{\Omega }a(s)\hbox {d}v_{A}\). Let ab\(\in {\mathbb {R}} ^{\Omega }\) be A-conditionally comonotonic. By Axiom 2, for all pairwise A-conditionally comonotonic functions abc, it holds that \(I(a)\ge I(b)\) implies \( I(\alpha a+(1-\alpha )c)\ge I(\alpha b+(1-\alpha )c) \). First, let us prove the following claim: If \(x,y\in {\mathbb {R}} ^{\Omega }\) are A-conditionally comonotonic, then \(I(\alpha x+(1-\alpha )y)=\alpha I(x)+(1-\alpha )I(y)\) for all \(\alpha \in [0,1]\).

Indeed, for any \(\varepsilon >0\), \((I(x)+\varepsilon )1_{\Omega }\) satisfies \(I((I(x)+\varepsilon )1_{\Omega })>I(x)\) and \(\ (I(y)+\varepsilon )1_{\Omega }\) satisfies \(I((I(y)+\varepsilon )1_{\Omega })>I(y)\) since \( I(\lambda 1_{\Omega })=\lambda \). Hence,

$$\begin{aligned}&\alpha I(x)+(1-\alpha )I(y)+\varepsilon \\&\quad = I(\alpha (I(x)+\varepsilon )1_{\Omega }+(1-\alpha )(I(y)+\varepsilon )1_{\Omega }) \\&\quad>I(\alpha x+(1-\alpha )(I(y)+\varepsilon )1_{\Omega }) \\&\quad >I(\alpha x+(1-\alpha )y). \end{aligned}$$

The first inequality holds since \(\alpha (I(x)+\varepsilon )1_{\Omega }\), x, and \((1-\alpha )(I(y)+\varepsilon )1_{\Omega }\) are pairwise A-conditionally comonotonic. The second inequality holds since x, y, and \( (1-\alpha )(I(y)+\varepsilon )1_{\Omega }\) are pairwise A-conditionally comonotonic.

Since \(\varepsilon \) is any positive number, we obtain that

$$\begin{aligned} \alpha I(x)+(1-\alpha )I(y)\ge I(\alpha x+(1-\alpha )y). \end{aligned}$$

Furthermore, the converse inequality can be shown by using a similar argument for \(\varepsilon <0\). Therefore, it is proved that

$$\begin{aligned} I(\alpha x+(1-\alpha )y)=\alpha I(x)+(1-\alpha )I(y). \end{aligned}$$

Then, our claim is proved.

Next, let us use this claim twice. First, let \(\alpha =1/2\), \(x=2a\), and \(y=0\). Then, \(I(a)=(1/2)I(2a)\). Similarly, let \(\alpha =1/2\), \(x=0\), and \(y=2b\). Then, \( I(b)=(1/2)I(2b)\). Second, let \(\alpha =1/2\), \(x=2a\), and \(y=2b\). Then,

$$\begin{aligned} I(a+b)=\frac{1}{2}I(2a)+\frac{1}{2}I(2b)=I(a)+I(b). \end{aligned}$$

\(\square \)

Lemma 11

Let \(v_A\) be the capacity in Lemma 4. Then, \( v_{A}(S)=v_{A}(S\cap A)+v_{A}(S\cap A^{c})\) for all \(S\in {\mathcal {F}}\).

Proof

Note that \(1_{S\cap A}\) and \(1_{S\cap A^{c}}\) are A-conditionally comonotonic. By Lemma 5, it holds that \(\int _{\Omega }1_{S\cap A}+1_{S\cap A^{c}}\hbox {d}v_{A}=\int _{\Omega }1_{S\cap A}\hbox {d}v_{A}+\int _{\Omega }1_{S\cap A^{c}}\hbox {d}v_{A}\). This equation implies that \(v_{A}(S)=v_{A}(S\cap A)+v_{A}(S\cap A^{c})\). \(\square \)

Lemma 12

Let \(v_A\) be the capacity in Lemma 4. Then, \( v_A(S)=\sum _{\omega \in S} v_A(\{\omega \})\) for every S with \(S \subseteq A^c\).

Proof

Let \(T_1 \subseteq A^c\) and \(T_2 \subseteq A^c\) satisfy \(T_1 \cap T_2 = \emptyset \). Then, \(1_{T_1}\) and \(1_{T_2}\) are A-conditionally comonotonic. Hence, by Lemma 5, \(\int (1_{T_1} +1_{T_2})\hbox {d}v_A=\int 1_{T_1}\hbox {d}v_A+\int 1_{T_2}\hbox {d}v_A\), which implies \(v_A(T_1 \cup T_2)=v_A(T_1)+v_A(T_2)\). Therefore, for every S with \(S \subseteq A^c\), it holds that \( v_A(S)=\sum _{\omega \in S} v_A(\{\omega \})\) since \(\Omega \) is finite. \(\square \)

Lemma 13

Let \(v_A\) be the capacity in Lemma 4. Then, \(v_{A}(S)=0\) for every \(S \subseteq A^c\).

Proof

Take an arbitrary y with \(y^{*}\succ _{A}y\succ _{A}y_{*}\). Indeed, such \(y^*\), y, and \(y_*\) exist by A3, A5, and A6. And let \(f=(y^{*},\{\omega \};y_{*},\Omega \backslash \{\omega \})\), \(g=(y,\{\omega \};y_{*},\Omega \backslash \{\omega \})\). By A7, it holds that \(f\sim _{A}g\). Hence, \(\int _{\Omega }u(f(\omega ))\hbox {d}v_{A}(\omega )=\int _{\Omega }u(g(\omega ))\hbox {d}v_{A}(\omega )\), which leads that \((u(y^{*})-u(y_{*}))v_{A}(\{\omega \})+u(y_{*})=(u(y)-u(y_{*}))v_{A}(\{\omega \})+u(y_{*})\). Therefore, \(v_{A}(\{\omega \})=0\) since \(u(y^{*})-u(y)>0\). This result together with Lemma 12 proves the claim. \(\square \)

The following lemma is shown from Lemmas 1112, and 13, immediately.

Lemma 14

Let \(v_A\) be the capacity in Lemma 4. Then, \( v_{A}(S)=v_{A}(S\cap A)\) for all \(S\in {\mathcal {F}}\).

Proof of Lemma 6

Proof

Let \(f, g \in L_0\) and \(A \in {\mathcal {F}} \backslash \{\Omega ,\emptyset \}\) with \(v(A^c) \ne 1\). For ease of notation, let \(\Omega _1 =\Omega ^{UC}(f,g;A)\). Note that for all \(\omega \in \Omega _1\) and for all \(\omega ' \in \Omega _1 ^c\), \(f(\omega ) \succeq f(\omega ')\) and \(g(\omega ) \succeq g(\omega ')\). Let \(\langle \omega _1 ^f, \omega _2 ^f, \ldots , \omega _n ^f \rangle \) be a permutation of \(\Omega \) satisfying \(u(f(\omega _1 ^f)) \ge u(f(\omega _2 ^f)) \ge \cdots \ge u(f(\omega _n ^f))\). Similarly, let \(\langle \omega _1 ^g, \omega _2 ^g, \ldots , \omega _n ^g \rangle \) be a permutation of \(\Omega \) satisfying \(u(g(\omega _1 ^g)) \ge u(g(\omega _2 ^g)) \ge \cdots \ge u(g(\omega _n ^g))\). Let \(\Omega _1=\{\omega _1 ^f, \ldots , \omega _k ^f \}=\{\omega _1 ^g, \ldots , \omega _k ^g \}\). Then, by Axiom 8, it is possible to set \(\omega _i ^f=\omega _i ^g\) for all \(i \in \{1,\ldots ,k\}\).

Note that

$$\begin{aligned} \int _{\Omega } u(f) \hbox {d}v_A ^{DS}= & {} \sum _{i=1}^n (u(f(\omega _i ^f))-u(f(\omega _{i+1} ^f)))v_A^{DS}(\{\omega _1^ f, \ldots , \omega _i ^f \}) \\ \text {and}\,\,\int _{\Omega } u(g) \hbox {d}v_A ^{DS}= & {} \sum _{i=1}^n (u(g(\omega _i ^g))-u(g(\omega _{i+1} ^g)))v_A^{DS}(\{\omega _1^g, \ldots , \omega _i ^g \}), \end{aligned}$$

where \(u(f(\omega _{n+1} ^f)) = u(g(\omega _{n+1} ^g))=0\). Then, it follows that

$$\begin{aligned}&f \succeq _A g \Leftrightarrow \int _{\Omega } u(f) \hbox {d}v_A ^{DS} \ge \int _{\Omega } u(g) \hbox {d}v_A ^{DS} \\&\quad \Leftrightarrow \sum _{i=1}^n (u(f(\omega _i ^f))-u(f(\omega _{i+1} ^f)))(v(\{\omega _1^ f, \ldots , \omega _i ^f \} \cup A^c)-v(A^c)) \\&\quad \ge \sum _{i=1}^n (u(g(\omega _i ^g))-u(g(\omega _{i+1} ^g)))(v(\{\omega _1^g, \ldots , \omega _i ^g \} \cup A^c)-v(A^c)) \\&\quad \Leftrightarrow \sum _{i=1}^n (u(f(\omega _i ^f))-u(f(\omega _{i+1} ^f)))v(\{\omega _1^ f, \ldots , \omega _i ^f \} \cup A^c)- u(f(\omega _1^f))v(A^c) \\&\quad \ge \sum _{i=1}^n (u(g(\omega _i ^g))-u(g(\omega _{i+1} ^g)))v(\{\omega _1^g, \ldots , \omega _i ^g \} \cup A^c)-u(g(\omega _1 ^g))v(A^c), \end{aligned}$$

where the second equivalence holds by telescoping sums. Furthermore, by Axiom 8, the summation from \(i=1\) to \(k-1\) of the first term on the left-hand side of the inequality is equal to that on the right-hand side of the inequality and \(u(f(\omega _1^f))v(A^c)=u(g(\omega _1^g))v(A^c)\). Moreover, by \(A^c \subseteq \{\omega _1^f,\ldots ,\omega _k^f\}=\{\omega _1^g,\ldots ,\omega _k^g\}\), it follows that

$$\begin{aligned}&f \succeq _A g \\&\quad \Leftrightarrow \sum _{i=k}^n (u(f(\omega _i ^f))-u(f(\omega _{i+1} ^f)))v(\{\omega _1^ f, \ldots , \omega _i ^f \}) \\&\quad \ge \sum _{i=k}^n (u(g(\omega _i ^g))-u(g(\omega _{i+1} ^g)))v(\{\omega _1^g, \ldots , \omega _i ^g \}). \end{aligned}$$

Note that by Axiom 8,

$$\begin{aligned}&\sum _{i=1}^{k-1} (u(f(\omega _i ^f))-u(f(\omega _{i+1} ^f)))v(\{\omega _1^ f, \ldots , \omega _i ^f \})\\&\quad =\sum _{i=1}^{k-1} (u(g(\omega _i ^g))-u(g(\omega _{i+1} ^g)))v(\{\omega _1^g, \ldots , \omega _i ^g \}). \end{aligned}$$

By adding this to both sides of the above inequality, it follows that

$$\begin{aligned} f \succeq _A g \Leftrightarrow \int _{\Omega } u(f) \hbox {d}v \ge \int _{\Omega } u(g) \hbox {d}v \Leftrightarrow f \succeq g. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asano, T., Kojima, H. Consequentialism and dynamic consistency in updating ambiguous beliefs. Econ Theory 68, 223–250 (2019). https://doi.org/10.1007/s00199-018-1121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00199-018-1121-0

Keywords

JEL Classification

Navigation