Abstract
By proposing the notions of upper-constrained dynamic consistency and lower-constrained dynamic consistency that are weaker axioms than dynamic consistency, this paper axiomatizes the Dempster–Shafer updating rule and naive Bayes’ updating rule within the framework of Choquet expected utility. Based on the notion of conditional comonotonicity, this paper also provides an axiomatization of consequentialism under Choquet expected utility. Furthermore, based on the idea of the mean-preserving rule, this paper provides a unified approach for distinguishing capacity updating rules (the Dempster–Shafer updating rule, naive Bayes’ updating rule, and Fagin–Halpern updating rule) according to the degree of dynamic consistency.
Similar content being viewed by others
Notes
Throughout this paper, ambiguity and Knightian uncertainty are used interchangeably.
For the definition of acts or lotteries, see Sect. 2.1.
The notion of conditional comonotonicity is an extension of comonotonicity. See Sect. 3.
Wang (2003) considers a complicated framework and provides a set of axioms that endogenize information filtration. Epstein and Schneider (2003) propose a set of axioms of conditional preferences within the framework of MEU. Ghirardato et al. (2008) and Hanany and Klibanoff (2007,2009) propose a set of axioms of conditional preferences under more general frameworks than MEU.
Let Y be the set of all distributions over X with finite supports. Define a mixing operation as follows. For all \(y,y^{\prime }\in Y\) and all \( \alpha \in [0,1]\), \(\alpha y+(1-\alpha )y^{\prime }\in Y\) is given by \((\alpha y+(1-\alpha )y^{\prime })(x)=\alpha y(x)+(1-\alpha )y^{\prime }(x)\). Then, the set Y with this mixing operation is a mixture space. For example, see Gilboa (2009).
A binary relation \(\succeq _T\) is a weak order if and only if \(\succ _T\) is asymmetric and negatively transitive, whereas a binary relation \(\succ _T\) is asymmetric if for all \(f,\,g\in L_{0}\), \(f\succ _T g\Rightarrow g\nsucc _T f\) and it is negatively transitive if for all \(f,\,g,\,h\in L_{0}\), \(f\nsucc _T g\) and \(g \nsucc _T h \Rightarrow f \nsucc _T h\). For example, see Kreps (1988, p.9).
Let \({\mathcal {E}} \subseteq 2^{\Omega }\) be a collection of the subsets of \(\Omega \). Two functions on \(\Omega \) are \({\mathcal {E}}\)-cominimum if, for each \(E \in {\mathcal {E}}\), the set of minimizers of x on E and that of y on E have a common element. A functional I on the set of functions of \( \Omega \) is \({\mathcal {E}}\)-cominimum additive if \(I(x+y)=I(x)+I(y)\) whenever two functions x and y are \({\mathcal {E}}\)-cominimum. The notion of \({\mathcal {E}}\)-cominimum additivity was first proposed by Kajii et al. (2007).
If the DM satisfies Axiom GS2, she is assumed to consider that the minimal (or the worst) outcome would have followed if an event A had not occurred. That is, she considers that the minimal outcome has occurred in \(A^{c}\). In this sense, the naive Bayes’ updating rule is an optimistic one.
Note that Axiom GS2 implies Axiom 11 because \(f_S(\omega )=y_*\) on \(A^c\). Next, let \(f,g \in L_0\) with \(f|_A=g|_A\). Then, \((f,A;y_*,A^c) \sim (g,A;y_*,A^c)\) since \((f,A;y_*,A^c)=(g,A;y_*,A^c)\).
Horie (2013) defines the set of binary acts \({\mathcal {F}}^2\) by \(\{(b,A;\omega ,A^c) | b, w \in X\, \text {such that}\,b \ge w\,\text {and}\, A \in 2^{\Omega }\}\).
We acknowledge an anonymous reviewer who points out this condition.
References
Anscombe, F., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)
Asano, T., Kojima, H.: An axiomatization of choquet expected utility with cominimum independence. Theor. Decis. 78, 117–139 (2015)
Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)
Dempster, A.P.: A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B 30, 205–232 (1968)
Dominiak, A., Lefort, J.-P.: Unambiguous events and dynamic choquet preferences. Econ. Theory 46, 401–425 (2011)
Dominiak, A., Duersch, P., Lefort, J.-P.: A dynamic Ellsberg urn experiment. Games Econ. Behav. 75, 625–638 (2012)
Eichberger, J., Grant, S., Kelsey, D.: Updating choquet beliefs. J. Math. Econ. 43, 888–899 (2007)
Ellsberg, D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75, 643–669 (1961)
Epstein, L.G., Le Breton, M.: Dynamically consistent beliefs must be Bayesian. J. Econ. Theory 61, 1–22 (1993)
Epstein, L.G., Schneider, M.: Recursive multiple-priors. J. Econ. Theory 113, 1–31 (2003)
Fagin, R., Halpern, J.Y.: A new approach to updating beliefs. In: Bonissone, P.P., Henrion, M., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence, vol. 6, pp. 347–374. Springer, Berlin (1991)
Ghirardato, P.: Rivisiting savage in a conditional world. Econ. Theory 20, 83–92 (2002)
Ghirardato, P., Maccheroni, F., Marinacci, M.: Differentiating ambiguity and ambiguity attitude. J. Econ. Theory 118, 133–173 (2004)
Ghirardato, P., Maccheroni, F., Marinacci, M.: Revealed ambiguity and its consequences: updating. In: Abdellaboui, M., Hey, J.D. (eds.) Advances in Decision Making under Risk and Uncertainty, pp. 3–18. Springer, Berlin (2008)
Gilboa, I.: Theory of Decision Under Uncertainty. Cambridge University Press, Cambridge (2009)
Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique priors. J. Math. Econ. 18, 141–153 (1989)
Gilboa, I., Schmeidler, D.: Updating ambiguous beliefs. J. Econ. Theory 59, 33–49 (1993)
Hammond, P.: Consequentialist foundations for expected utility. Theor. Decis. 25, 25–78 (1988)
Hammond, P.: Consistent plans, consequentialism, and expected utility. Econometrica 57, 1445–1449 (1989)
Hanany, E., Klibanoff, P.: Updating preferences with multiple priors. Theor. Econ. 2, 261–298 (2007)
Hanany, E., Klibanoff, P.: Updating ambiguity averse preferences. B.E. J. Theor. Econ. 9(1 (Advances)), Article 37 (2009)
Horie, M.: Reexamination on updating choquet beliefs. J. Math. Econ. 49, 467–470 (2013)
Jouini, E., Napp, C.: Conditional comonotonicity. Decis. Econ. Finance 27, 153–166 (2004)
Kajii, A., Kojima, H., Ui, T.: Cominimum additive operators. J. Math. Econ. 43, 218–230 (2007)
Kreps, D.: Notes on the Theory of Choice. Westview Press, Boulder (1988)
Machina, M.: Dynamic consistency and non-expected utility models of choice under uncertainty. J. Econ. Lit. 27, 1622–1668 (1989)
Pires, C.P.: A rule for updating ambiguous beliefs. Theor. Decis. 53, 137–152 (2002)
Sarin, R., Wakker, P.: Dynamic choice and nonexpected utility. J. Risk Uncertain. 17, 87–119 (1998)
Savage, L.J.: The Foundation of Statistics. New York, Wiley (1954) (Second edition in 1972, Dover)
Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97, 255–261 (1986)
Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)
Siniscalchi, M.: Dynamic choice under ambiguity. Theor. Econ. 6, 379–421 (2011)
Wang, T.: Conditional preferences and updating. J. Econ. Theory 108, 286–321 (2003)
Acknowledgements
We acknowledge an anonymous reviewer and the co-editor, Mark Machina, whose comments improve this paper substantially. We are grateful to Youichiro Higashi, Hidetoshi Komiya, Hiroyuki Ozaki, Shin’ichi Suda, Masayuki Yao, and participants at Nagoya University, Keio University, and China Meeting of Econometric Society 2016 (Chengdu, China). This research is financially supported by the JSPS KAKENHI Grant Numbers 17K03806, 16K03558, 26380240, 25380239, and 23000001, and the Joint Research Program of KIER.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix
Definition 9
An operator \(I:{\mathbb {R}}^{\Omega } \rightarrow {\mathbb {R}}\) is comonotonic additive if \(I(x+y)=I(x)+I(y)\) whenever x and y are comonotonic.
It is well known that Choquet integrals satisfy comonotonic additivity. Furthermore, Schmeidler (1986) shows that if an operator \(I:{\mathbb {R}}^{\Omega }\rightarrow {\mathbb {R}}\) satisfies comonotonic additivity and monotonicity (i.e., \( x\ge y\) on \(\Omega \) implies \(I(x)\ge I(y)\) for all \(x,\,y\in {\mathbb {R}} ^{\Omega }\)), then I is a Choquet integral. As mentioned in Schmeidler (1986), if an operator \(I:{\mathbb {R}}^{\Omega }\rightarrow {\mathbb {R}}\) satisfies comonotonic additivity and monotonicity, then it satisfies positive homogeneity of degree 1 (that is, \(I(tx)=tI(x)\) for all \(t\ge 0\)). Moreover, it is shown that if an operator \(I:{\mathbb {R}} ^{\Omega }\rightarrow {\mathbb {R}}\) satisfies comonotonic additivity and positive homogeneity of degree 1, then I is a Choquet integral.
Definition 10
Choquet integrals with respect to a capacity v are said to be A-conditionally comonotonic additive if \(\int _{\Omega }(x+y)\hbox {d}v=\int _{\Omega }x\hbox {d}v+\int _{\Omega }y\hbox {d}v\) whenever x and y are A-conditionally comonotonic.
For A-conditional comonotonicity, we can show the following proposition.
Proposition 2
Let \(A \in {\mathcal {F}}\). Let v be a capacity such that \(v(S\cap A)=v(S)\) for any \(S \in {\mathcal {F}}\). Then, the Choquet integral of x with respect to such a capacity v, \(\int _{\Omega } x \hbox {d}v\), is A-conditionally comonotonic additive. That is, \(\int _{\Omega }(x+y)\hbox {d}v=\int _{\Omega }x\hbox {d}v+\int _{\Omega }y\hbox {d}v\) if x and y are A-conditionally comonotonic. Moreover, \(\int _{\Omega }x\hbox {d}v=\int _{A}x|_{A}\hbox {d}v|_{A}\) where \(x|_A\) and \(v|_A\) are the restriction of a function x and the restriction of a capacity v on a set A, respectively.
Proof
Let \(\langle \omega _{1},\omega _{2},\ldots ,\omega _{n} \rangle \) be a permutation of all the elements of \(\Omega \) satisfying \(x(\omega _{1})\ge x(\omega _{2})\ge \cdots \ge x(\omega _{n})\). Moreover, let \(A=\{\omega _{i(1)},\omega _{i(2)},\ldots , \omega _{i(k)}\}\), where \(\{i(1),i(2),\ldots ,i(k)\}\subseteq \{1,2,\ldots n\}\) and \(i(1)<i(2)<\cdots <i(k)\) for \(k=|A|\). Then,
The last formula is the Choquet integral on A. Thus, the proposition is shown since the Choquet integral on A is A-conditionally comonotonic additive. \(\square \)
Proof of Proposition 1
Proof
Suppose that \(f|_A=g|_A\). Then, by Proposition 2,
Next, we show the converse. Note that \(1_S|_A=1_{S \cap A}|_A\). Thus, by consequentialism, \(1_S \sim _A 1_{S \cap A}\). So, \(v_A (S)=\int _{\Omega } 1_S d v_A=\int _{\Omega }1_{S \cap A} \hbox {d}v_A=v_A (S \cap A)\). \(\square \)
Proof of Theorem 2
Proof
(If part) We assume that there exist capacities v and \(v_A\) on \({\mathcal {F}}\) and a non-constant affine real-valued function u on Y such that for all f and g in \(L_{0}\), \(f\succeq _{A}g\Leftrightarrow \;\int _{\Omega }u(f(\omega ))\hbox {d}v_{A}(\omega )\ge \int _{\Omega }u(g(\omega ))\hbox {d}v_{A}(\omega )\), where it holds that \( v_{A}(S)=v_{A}(S\cap A)\) for all \(S \in {\mathcal {F}}\).
Clearly, Axiom 5 holds since u is non-constant. Axiom 6 holds since u does not depend on a certain event A. Axioms 1, 3, and 4 hold by Theorem 1. Moreover, to show Axiom 7, note that \((y_{1},\{\omega \};y_{3},\Omega \backslash \{\omega \})=y_{1}1_{\{\omega \}}+y_{3}1_{\Omega \backslash \{\omega \}}\). Here, by \(\omega \in A^{c}\), \(1_{\{\omega \}}\) and \(1_{\Omega \backslash \{\omega \}}\) are A-conditionally comonotonic. Therefore, by Proposition 2, \(\int _{\Omega }u(y_{1},\{\omega \};y_{3},\Omega \backslash \{\omega \})\hbox {d}v_{A}=u(y_{1})v_{A}(\{\omega \})+u(y_{3})v_{A}(\Omega \backslash \{\omega \})\). Similarly, \(\int _{\Omega }u(y_{2},\{\omega \};y_{3},\Omega \backslash \{\omega \})\hbox {d}v_{A}=u(y_{2})v_{A}(\{\omega \})+u(y_{3})v_{A}(\Omega \backslash \{\omega \})\). On the other hand, \(v_{A}(\{\omega \})=v_{A}(\{\omega \}\cap A)=0\). Hence, Axiom 7 holds.
Finally, suppose that \(f,\,g,\,h\in L_{0}\) are pairwise A-conditionally comonotonic and that \(\int _{\Omega }u(f)\hbox {d}v_{A}\ge \int _{\Omega }u(g)\hbox {d}v_{A}\). Then,
from the A-conditionally comonotonic additivity of \(v_{A}\) shown in Proposition 2. Thus, Axiom 2 holds. \(\square \)
Now, by showing Lemmas 4, 5, and 11–14, we prove the only if part of Theorem 2. In the following, if the proofs for the unconditional preference \(\succeq \) are the same as those for the conditional preferences \(\succeq _A\), we omit them.
Proof of Lemma 4
Proof
If \(f,\,g\in L_{0}\) are comonotonic, then f and g are A-conditionally comonotonic. Thus, Axiom 2 implies Comonotonic Independence Axiom. By Theorem 1, Comonotonic Independence Axiom together with Axioms 1, 3, 4, 5 implies that there exist a capacity \(v_{A}\) on \({\mathcal {F}}\) and an affine real-valued function \(u_{A}\) on Y such that for all f and g in \(L_{0}\),
Moreover, by Axiom 6, for A and \(\Omega \), we can show the existence of the common utility function u such that it represents \(\succeq \) and \(\succeq _A\) on \(L_{c}\) since u is determined by the preference on \(L_{c}\). Moreover, by Axiom 5, u is non-constant. \(\square \)
Proof of Lemma 5
Proof
We prove this lemma by mimicking the arguments of Schmeidler (1986,1989). Let \(I(a)=\int _{\Omega }a(s)\hbox {d}v_{A}\). Let a, b\(\in {\mathbb {R}} ^{\Omega }\) be A-conditionally comonotonic. By Axiom 2, for all pairwise A-conditionally comonotonic functions a, b, c, it holds that \(I(a)\ge I(b)\) implies \( I(\alpha a+(1-\alpha )c)\ge I(\alpha b+(1-\alpha )c) \). First, let us prove the following claim: If \(x,y\in {\mathbb {R}} ^{\Omega }\) are A-conditionally comonotonic, then \(I(\alpha x+(1-\alpha )y)=\alpha I(x)+(1-\alpha )I(y)\) for all \(\alpha \in [0,1]\).
Indeed, for any \(\varepsilon >0\), \((I(x)+\varepsilon )1_{\Omega }\) satisfies \(I((I(x)+\varepsilon )1_{\Omega })>I(x)\) and \(\ (I(y)+\varepsilon )1_{\Omega }\) satisfies \(I((I(y)+\varepsilon )1_{\Omega })>I(y)\) since \( I(\lambda 1_{\Omega })=\lambda \). Hence,
The first inequality holds since \(\alpha (I(x)+\varepsilon )1_{\Omega }\), x, and \((1-\alpha )(I(y)+\varepsilon )1_{\Omega }\) are pairwise A-conditionally comonotonic. The second inequality holds since x, y, and \( (1-\alpha )(I(y)+\varepsilon )1_{\Omega }\) are pairwise A-conditionally comonotonic.
Since \(\varepsilon \) is any positive number, we obtain that
Furthermore, the converse inequality can be shown by using a similar argument for \(\varepsilon <0\). Therefore, it is proved that
Then, our claim is proved.
Next, let us use this claim twice. First, let \(\alpha =1/2\), \(x=2a\), and \(y=0\). Then, \(I(a)=(1/2)I(2a)\). Similarly, let \(\alpha =1/2\), \(x=0\), and \(y=2b\). Then, \( I(b)=(1/2)I(2b)\). Second, let \(\alpha =1/2\), \(x=2a\), and \(y=2b\). Then,
\(\square \)
Lemma 11
Let \(v_A\) be the capacity in Lemma 4. Then, \( v_{A}(S)=v_{A}(S\cap A)+v_{A}(S\cap A^{c})\) for all \(S\in {\mathcal {F}}\).
Proof
Note that \(1_{S\cap A}\) and \(1_{S\cap A^{c}}\) are A-conditionally comonotonic. By Lemma 5, it holds that \(\int _{\Omega }1_{S\cap A}+1_{S\cap A^{c}}\hbox {d}v_{A}=\int _{\Omega }1_{S\cap A}\hbox {d}v_{A}+\int _{\Omega }1_{S\cap A^{c}}\hbox {d}v_{A}\). This equation implies that \(v_{A}(S)=v_{A}(S\cap A)+v_{A}(S\cap A^{c})\). \(\square \)
Lemma 12
Let \(v_A\) be the capacity in Lemma 4. Then, \( v_A(S)=\sum _{\omega \in S} v_A(\{\omega \})\) for every S with \(S \subseteq A^c\).
Proof
Let \(T_1 \subseteq A^c\) and \(T_2 \subseteq A^c\) satisfy \(T_1 \cap T_2 = \emptyset \). Then, \(1_{T_1}\) and \(1_{T_2}\) are A-conditionally comonotonic. Hence, by Lemma 5, \(\int (1_{T_1} +1_{T_2})\hbox {d}v_A=\int 1_{T_1}\hbox {d}v_A+\int 1_{T_2}\hbox {d}v_A\), which implies \(v_A(T_1 \cup T_2)=v_A(T_1)+v_A(T_2)\). Therefore, for every S with \(S \subseteq A^c\), it holds that \( v_A(S)=\sum _{\omega \in S} v_A(\{\omega \})\) since \(\Omega \) is finite. \(\square \)
Lemma 13
Let \(v_A\) be the capacity in Lemma 4. Then, \(v_{A}(S)=0\) for every \(S \subseteq A^c\).
Proof
Take an arbitrary y with \(y^{*}\succ _{A}y\succ _{A}y_{*}\). Indeed, such \(y^*\), y, and \(y_*\) exist by A3, A5, and A6. And let \(f=(y^{*},\{\omega \};y_{*},\Omega \backslash \{\omega \})\), \(g=(y,\{\omega \};y_{*},\Omega \backslash \{\omega \})\). By A7, it holds that \(f\sim _{A}g\). Hence, \(\int _{\Omega }u(f(\omega ))\hbox {d}v_{A}(\omega )=\int _{\Omega }u(g(\omega ))\hbox {d}v_{A}(\omega )\), which leads that \((u(y^{*})-u(y_{*}))v_{A}(\{\omega \})+u(y_{*})=(u(y)-u(y_{*}))v_{A}(\{\omega \})+u(y_{*})\). Therefore, \(v_{A}(\{\omega \})=0\) since \(u(y^{*})-u(y)>0\). This result together with Lemma 12 proves the claim. \(\square \)
The following lemma is shown from Lemmas 11, 12, and 13, immediately.
Lemma 14
Let \(v_A\) be the capacity in Lemma 4. Then, \( v_{A}(S)=v_{A}(S\cap A)\) for all \(S\in {\mathcal {F}}\).
Proof of Lemma 6
Proof
Let \(f, g \in L_0\) and \(A \in {\mathcal {F}} \backslash \{\Omega ,\emptyset \}\) with \(v(A^c) \ne 1\). For ease of notation, let \(\Omega _1 =\Omega ^{UC}(f,g;A)\). Note that for all \(\omega \in \Omega _1\) and for all \(\omega ' \in \Omega _1 ^c\), \(f(\omega ) \succeq f(\omega ')\) and \(g(\omega ) \succeq g(\omega ')\). Let \(\langle \omega _1 ^f, \omega _2 ^f, \ldots , \omega _n ^f \rangle \) be a permutation of \(\Omega \) satisfying \(u(f(\omega _1 ^f)) \ge u(f(\omega _2 ^f)) \ge \cdots \ge u(f(\omega _n ^f))\). Similarly, let \(\langle \omega _1 ^g, \omega _2 ^g, \ldots , \omega _n ^g \rangle \) be a permutation of \(\Omega \) satisfying \(u(g(\omega _1 ^g)) \ge u(g(\omega _2 ^g)) \ge \cdots \ge u(g(\omega _n ^g))\). Let \(\Omega _1=\{\omega _1 ^f, \ldots , \omega _k ^f \}=\{\omega _1 ^g, \ldots , \omega _k ^g \}\). Then, by Axiom 8, it is possible to set \(\omega _i ^f=\omega _i ^g\) for all \(i \in \{1,\ldots ,k\}\).
Note that
where \(u(f(\omega _{n+1} ^f)) = u(g(\omega _{n+1} ^g))=0\). Then, it follows that
where the second equivalence holds by telescoping sums. Furthermore, by Axiom 8, the summation from \(i=1\) to \(k-1\) of the first term on the left-hand side of the inequality is equal to that on the right-hand side of the inequality and \(u(f(\omega _1^f))v(A^c)=u(g(\omega _1^g))v(A^c)\). Moreover, by \(A^c \subseteq \{\omega _1^f,\ldots ,\omega _k^f\}=\{\omega _1^g,\ldots ,\omega _k^g\}\), it follows that
Note that by Axiom 8,
By adding this to both sides of the above inequality, it follows that
\(\square \)
Rights and permissions
About this article
Cite this article
Asano, T., Kojima, H. Consequentialism and dynamic consistency in updating ambiguous beliefs. Econ Theory 68, 223–250 (2019). https://doi.org/10.1007/s00199-018-1121-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00199-018-1121-0
Keywords
- Dynamic consistency
- Consequentialism
- Choquet expected utility
- Conditional comonotonicity
- Conditional preferences
- Dempster–Shafer updating rule
- Naive Bayes’ updating rule
- Fagin–Halpern updating rule