Advertisement

Consequentialism and dynamic consistency in updating ambiguous beliefs

  • Takao Asano
  • Hiroyuki Kojima
Research Article
  • 118 Downloads

Abstract

By proposing the notions of upper-constrained dynamic consistency and lower-constrained dynamic consistency that are weaker axioms than dynamic consistency, this paper axiomatizes the Dempster–Shafer updating rule and naive Bayes’ updating rule within the framework of Choquet expected utility. Based on the notion of conditional comonotonicity, this paper also provides an axiomatization of consequentialism under Choquet expected utility. Furthermore, based on the idea of the mean-preserving rule, this paper provides a unified approach for distinguishing capacity updating rules (the Dempster–Shafer updating rule, naive Bayes’ updating rule, and Fagin–Halpern updating rule) according to the degree of dynamic consistency.

Keywords

Dynamic consistency Consequentialism Choquet expected utility Conditional comonotonicity Conditional preferences Dempster–Shafer updating rule Naive Bayes’ updating rule Fagin–Halpern updating rule 

JEL Classification

C71 D81 D90 

Notes

Acknowledgements

We acknowledge an anonymous reviewer and the co-editor, Mark Machina, whose comments improve this paper substantially. We are grateful to Youichiro Higashi, Hidetoshi Komiya, Hiroyuki Ozaki, Shin’ichi Suda, Masayuki Yao, and participants at Nagoya University, Keio University, and China Meeting of Econometric Society 2016 (Chengdu, China). This research is financially supported by the JSPS KAKENHI Grant Numbers 17K03806, 16K03558, 26380240, 25380239, and 23000001, and the Joint Research Program of KIER.

References

  1. Anscombe, F., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)CrossRefGoogle Scholar
  2. Asano, T., Kojima, H.: An axiomatization of choquet expected utility with cominimum independence. Theor. Decis. 78, 117–139 (2015)CrossRefGoogle Scholar
  3. Dempster, A.P.: Upper and lower probabilities induced by a multi-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)CrossRefGoogle Scholar
  4. Dempster, A.P.: A generalization of Bayesian inference. J. R. Stat. Soc. Ser. B 30, 205–232 (1968)Google Scholar
  5. Dominiak, A., Lefort, J.-P.: Unambiguous events and dynamic choquet preferences. Econ. Theory 46, 401–425 (2011)CrossRefGoogle Scholar
  6. Dominiak, A., Duersch, P., Lefort, J.-P.: A dynamic Ellsberg urn experiment. Games Econ. Behav. 75, 625–638 (2012)CrossRefGoogle Scholar
  7. Eichberger, J., Grant, S., Kelsey, D.: Updating choquet beliefs. J. Math. Econ. 43, 888–899 (2007)CrossRefGoogle Scholar
  8. Ellsberg, D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75, 643–669 (1961)CrossRefGoogle Scholar
  9. Epstein, L.G., Le Breton, M.: Dynamically consistent beliefs must be Bayesian. J. Econ. Theory 61, 1–22 (1993)CrossRefGoogle Scholar
  10. Epstein, L.G., Schneider, M.: Recursive multiple-priors. J. Econ. Theory 113, 1–31 (2003)CrossRefGoogle Scholar
  11. Fagin, R., Halpern, J.Y.: A new approach to updating beliefs. In: Bonissone, P.P., Henrion, M., Kanal, L.N., Lemmer, J.F. (eds.) Uncertainty in Artificial Intelligence, vol. 6, pp. 347–374. Springer, Berlin (1991)Google Scholar
  12. Ghirardato, P.: Rivisiting savage in a conditional world. Econ. Theory 20, 83–92 (2002)CrossRefGoogle Scholar
  13. Ghirardato, P., Maccheroni, F., Marinacci, M.: Differentiating ambiguity and ambiguity attitude. J. Econ. Theory 118, 133–173 (2004)CrossRefGoogle Scholar
  14. Ghirardato, P., Maccheroni, F., Marinacci, M.: Revealed ambiguity and its consequences: updating. In: Abdellaboui, M., Hey, J.D. (eds.) Advances in Decision Making under Risk and Uncertainty, pp. 3–18. Springer, Berlin (2008)CrossRefGoogle Scholar
  15. Gilboa, I.: Theory of Decision Under Uncertainty. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  16. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique priors. J. Math. Econ. 18, 141–153 (1989)CrossRefGoogle Scholar
  17. Gilboa, I., Schmeidler, D.: Updating ambiguous beliefs. J. Econ. Theory 59, 33–49 (1993)CrossRefGoogle Scholar
  18. Hammond, P.: Consequentialist foundations for expected utility. Theor. Decis. 25, 25–78 (1988)CrossRefGoogle Scholar
  19. Hammond, P.: Consistent plans, consequentialism, and expected utility. Econometrica 57, 1445–1449 (1989)CrossRefGoogle Scholar
  20. Hanany, E., Klibanoff, P.: Updating preferences with multiple priors. Theor. Econ. 2, 261–298 (2007)Google Scholar
  21. Hanany, E., Klibanoff, P.: Updating ambiguity averse preferences. B.E. J. Theor. Econ. 9(1 (Advances)), Article 37 (2009)Google Scholar
  22. Horie, M.: Reexamination on updating choquet beliefs. J. Math. Econ. 49, 467–470 (2013)CrossRefGoogle Scholar
  23. Jouini, E., Napp, C.: Conditional comonotonicity. Decis. Econ. Finance 27, 153–166 (2004)CrossRefGoogle Scholar
  24. Kajii, A., Kojima, H., Ui, T.: Cominimum additive operators. J. Math. Econ. 43, 218–230 (2007)CrossRefGoogle Scholar
  25. Kreps, D.: Notes on the Theory of Choice. Westview Press, Boulder (1988)Google Scholar
  26. Machina, M.: Dynamic consistency and non-expected utility models of choice under uncertainty. J. Econ. Lit. 27, 1622–1668 (1989)Google Scholar
  27. Pires, C.P.: A rule for updating ambiguous beliefs. Theor. Decis. 53, 137–152 (2002)CrossRefGoogle Scholar
  28. Sarin, R., Wakker, P.: Dynamic choice and nonexpected utility. J. Risk Uncertain. 17, 87–119 (1998)CrossRefGoogle Scholar
  29. Savage, L.J.: The Foundation of Statistics. New York, Wiley (1954) (Second edition in 1972, Dover)Google Scholar
  30. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97, 255–261 (1986)CrossRefGoogle Scholar
  31. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)CrossRefGoogle Scholar
  32. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)Google Scholar
  33. Siniscalchi, M.: Dynamic choice under ambiguity. Theor. Econ. 6, 379–421 (2011)CrossRefGoogle Scholar
  34. Wang, T.: Conditional preferences and updating. J. Econ. Theory 108, 286–321 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of EconomicsOkayama UniversityOkayamaJapan
  2. 2.Department of EconomicsTeikyo UniversityHachioji, TokyoJapan

Personalised recommendations