## Abstract

We introduce a notion of bargaining set for finite economies and show its convergence to the set of Walrasian allocations.

### Keywords

Bargaining set Coalitions Core Veto mechanism Justified objections### JEL Classification

D51 D11 D00### References

- Anderson, R.M., Trockel, W., Zhou, L.: Nonconvergence of the Mas-Colell and Zhou bargaining sets. Econometrica
**65**, 1227–1239 (1997)CrossRefGoogle Scholar - Anderson, R.M.: Convergence of the Aumann–Davis–Maschler and Geanakoplos Bargaining Sets. Econ. Theory
**11**, 1–37 (1998). doi: 10.1007/s001990050176 CrossRefGoogle Scholar - Arrow, K., Hahn, F.: General Competitive Analysis. Holden-Day, San Francisco (1971)Google Scholar
- Aumann, R.J.: Markets with a continuum of traders. Econometrica
**32**, 39–50 (1964)CrossRefGoogle Scholar - Aumann, R., Maschler, M.: The bargaining set for cooperative games. In: Dresher, M., Shapley, L.S., Tucker, A.W. (eds.) Advances in Game Theory, pp. 443–476. Princeton University Press, Princeton (1964)Google Scholar
- Davis, M., Maschler, M.: Existence of stable payoff configurations for cooperative games. Bull. Am. Math. Soc.
**69**, 106–108 (1963)CrossRefGoogle Scholar - Debreu, G., Scarf, H.: A limit theorem on the core of an economy. Int. Econ. Rev.
**4**, 235–246 (1963)CrossRefGoogle Scholar - Dierker, E.: Topological Methods in Walrasian Economics. Springer-Verlag, Berlin, Heidelberg and New York (1973)Google Scholar
- Dutta, B., Ray, D., Sengupta, K., Vohra, R.: A consistent bargaining set. J. Econ. Theory
**49**, 93–112 (1989)CrossRefGoogle Scholar - Edgeworth, F.Y.: Mathematical Psychics. Paul Kegan, London (1881)Google Scholar
- Fisher, F.: Gross substitutes and the utility function. J. Econ. Theory
**4**, 82–87 (1972)CrossRefGoogle Scholar - García-Cutrín, J., Hervés-Beloso, C.: A discrete approach to continuum economies. Econ. Theory
**3**, 577–584 (1993). doi: 10.1177/0022002793037003003 CrossRefGoogle Scholar - Geanakoplos, J.: The bargaining set and nonstandard analysis. Chapter 3 of Ph.D. Dissertation, Department of Economics, Harvard University, Cambridge (1978)Google Scholar
- Hervés-Beloso, C., Moreno-García, E.: The veto mechanism revisited. In: Lasonde, M. (ed.) Approximation, Optimization and Mathematical Economics, pp. 147–159. Physica Verlag, Heidelberg, New York (2001)CrossRefGoogle Scholar
- Hildenbrand, W.: Continuity of the equilibrium-set correspondence. J. Econ. Theory
**5**, 152–162 (1972)CrossRefGoogle Scholar - Maschler, M.: An advantage of the bargaining set over the core. J. Econ. Theory
**13**, 124–192 (1976)CrossRefGoogle Scholar - Mas-Colell, A.: An equivalence theorem for a bargaining set. J. Math. Econ.
**18**, 129–139 (1989)CrossRefGoogle Scholar - Mas-Colell, A.: On the uniqueness once again. In: Barnett, W., Cornet, B., d’Aspremont, J., Gabszewicz, J., Mas-Colell, A. (eds.) Equilibrium Theory and Applications, pp. 275–296. Cambridge University Press, Cambridge (1991)Google Scholar
- Mityushin, L.G., Polterovich, V.W.: Criteria for monotonicity of demand function (in Russian). Ekonomika i Matematicheskie Metody
**14**, 122–128 (1978)Google Scholar - Roberts, D.J., Postlewaite, A.: The incentives for price-taking behavior in large exchange economies. Econometrica
**44**, 115–127 (1976)CrossRefGoogle Scholar - Varian, H.: Additive Utility and Gross Substitutes. University of Michigan, Ann Arbor, Mimeo (1985)Google Scholar
- Zhou, L.: A new bargaining set of an n-person game and endogenous coalition formation. Games Econ. Behav.
**6**, 512–526 (1994)CrossRefGoogle Scholar

## Copyright information

© Springer-Verlag GmbH Germany 2017