A limit result on bargaining sets

Research Article
  • 66 Downloads

Abstract

We introduce a notion of bargaining set for finite economies and show its convergence to the set of Walrasian allocations.

Keywords

Bargaining set Coalitions Core Veto mechanism Justified objections 

JEL Classification

D51 D11 D00 

References

  1. Anderson, R.M., Trockel, W., Zhou, L.: Nonconvergence of the Mas-Colell and Zhou bargaining sets. Econometrica 65, 1227–1239 (1997)CrossRefGoogle Scholar
  2. Anderson, R.M.: Convergence of the Aumann–Davis–Maschler and Geanakoplos Bargaining Sets. Econ. Theory 11, 1–37 (1998). doi:10.1007/s001990050176 CrossRefGoogle Scholar
  3. Arrow, K., Hahn, F.: General Competitive Analysis. Holden-Day, San Francisco (1971)Google Scholar
  4. Aumann, R.J.: Markets with a continuum of traders. Econometrica 32, 39–50 (1964)CrossRefGoogle Scholar
  5. Aumann, R., Maschler, M.: The bargaining set for cooperative games. In: Dresher, M., Shapley, L.S., Tucker, A.W. (eds.) Advances in Game Theory, pp. 443–476. Princeton University Press, Princeton (1964)Google Scholar
  6. Davis, M., Maschler, M.: Existence of stable payoff configurations for cooperative games. Bull. Am. Math. Soc. 69, 106–108 (1963)CrossRefGoogle Scholar
  7. Debreu, G., Scarf, H.: A limit theorem on the core of an economy. Int. Econ. Rev. 4, 235–246 (1963)CrossRefGoogle Scholar
  8. Dierker, E.: Topological Methods in Walrasian Economics. Springer-Verlag, Berlin, Heidelberg and New York (1973)Google Scholar
  9. Dutta, B., Ray, D., Sengupta, K., Vohra, R.: A consistent bargaining set. J. Econ. Theory 49, 93–112 (1989)CrossRefGoogle Scholar
  10. Edgeworth, F.Y.: Mathematical Psychics. Paul Kegan, London (1881)Google Scholar
  11. Fisher, F.: Gross substitutes and the utility function. J. Econ. Theory 4, 82–87 (1972)CrossRefGoogle Scholar
  12. García-Cutrín, J., Hervés-Beloso, C.: A discrete approach to continuum economies. Econ. Theory 3, 577–584 (1993). doi:10.1177/0022002793037003003 CrossRefGoogle Scholar
  13. Geanakoplos, J.: The bargaining set and nonstandard analysis. Chapter 3 of Ph.D. Dissertation, Department of Economics, Harvard University, Cambridge (1978)Google Scholar
  14. Hervés-Beloso, C., Moreno-García, E.: The veto mechanism revisited. In: Lasonde, M. (ed.) Approximation, Optimization and Mathematical Economics, pp. 147–159. Physica Verlag, Heidelberg, New York (2001)CrossRefGoogle Scholar
  15. Hildenbrand, W.: Continuity of the equilibrium-set correspondence. J. Econ. Theory 5, 152–162 (1972)CrossRefGoogle Scholar
  16. Maschler, M.: An advantage of the bargaining set over the core. J. Econ. Theory 13, 124–192 (1976)CrossRefGoogle Scholar
  17. Mas-Colell, A.: An equivalence theorem for a bargaining set. J. Math. Econ. 18, 129–139 (1989)CrossRefGoogle Scholar
  18. Mas-Colell, A.: On the uniqueness once again. In: Barnett, W., Cornet, B., d’Aspremont, J., Gabszewicz, J., Mas-Colell, A. (eds.) Equilibrium Theory and Applications, pp. 275–296. Cambridge University Press, Cambridge (1991)Google Scholar
  19. Mityushin, L.G., Polterovich, V.W.: Criteria for monotonicity of demand function (in Russian). Ekonomika i Matematicheskie Metody 14, 122–128 (1978)Google Scholar
  20. Roberts, D.J., Postlewaite, A.: The incentives for price-taking behavior in large exchange economies. Econometrica 44, 115–127 (1976)CrossRefGoogle Scholar
  21. Varian, H.: Additive Utility and Gross Substitutes. University of Michigan, Ann Arbor, Mimeo (1985)Google Scholar
  22. Zhou, L.: A new bargaining set of an n-person game and endogenous coalition formation. Games Econ. Behav. 6, 512–526 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Universidad de Vigo, RGEAVigoSpain
  2. 2.Universidad de Salamanca, IMESalamancaSpain

Personalised recommendations