Economic Theory

, Volume 65, Issue 4, pp 1079–1109 | Cite as

A proposal to extend expected utility in a quantum probabilistic framework

  • Diederik Aerts
  • Emmanuel Haven
  • Sandro SozzoEmail author
Research Article


Expected utility theory (EUT) is widely used in economic theory. However, its subjective probability formulation, first elaborated by Savage, is linked to Ellsberg-like paradoxes and ambiguity aversion. This has led various scholars to work out non-Bayesian extensions of EUT which cope with its paradoxes and incorporate attitudes toward ambiguity. A variant of the Ellsberg paradox, recently proposed by Mark Machina and confirmed experimentally, challenges existing non-Bayesian models of decision-making under uncertainty. Relying on a decade of research which has successfully applied the formalism of quantum theory to model cognitive entities and fallacies of human reasoning, we put forward a non-Bayesian extension of EUT in which subjective probabilities are represented by quantum probabilities, while the preference relation between acts depends on the state of the situation that is the object of the decision. We show that the benefits of using the quantum theoretical framework enable the modeling of the Ellsberg and Machina paradoxes, as the representation of ambiguity and behavioral attitudes toward it. The theoretical framework presented here is a first step toward the development of a ‘state-dependent non-Bayesian extension of EUT,’ and it has potential applications in economic modeling.


Expected utility theory Ellsberg paradox Machina paradox Quantum probability Quantum modeling 

JEL Classification

C02 Mathematical Methods D81 Criteria for Decision-Making under Risk and Uncertainty 


  1. Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53, 314–348 (2009)CrossRefGoogle Scholar
  2. Aerts, D., Sozzo, S.: From ambiguity aversion to a generalized expected utility. Modeling preferences in a quantum probabilistic framework. J. Math. Psychol. 74, 117–127 (2016)CrossRefGoogle Scholar
  3. Aerts, D., Gabora, L., Sozzo, S.: Concepts and their dynamics: a quantum-theoretic modeling of human thought. Top. Cogn. Sci. 5, 737–772 (2013a)Google Scholar
  4. Aerts, D., Sozzo, S., Tapia, J.: A quantum model for the Ellsberg and Machina paradoxes. Lect. Notes Comput. Sci. 7620, 48–59 (2012)CrossRefGoogle Scholar
  5. Aerts, D., Sozzo, S., Tapia, J.: Identifying quantum structures in the Ellsberg paradox. Int. J. Theor. Phys. 53, 3666–3682 (2014)CrossRefGoogle Scholar
  6. Aerts, D., Sozzo, S., Veloz, T.: A new fundamental evidence of non-classical structure in the combination of natural concepts. Philos. Trans. R. Soc. A 374, 20150095 (2016)CrossRefGoogle Scholar
  7. Aerts, D., Broekaert, J., Gabora, L., Sozzo, S.: Quantum structure and human thought. Behav. Brain Sci. 36, 274–276 (2013b)CrossRefGoogle Scholar
  8. Allais, M.: Le comportement de l’homme rationnel devant le risque. Critique des postulats et axiomes de l’ecole Américaine. Econometrica 21, 503–546 (1953)CrossRefGoogle Scholar
  9. Anscombe, F.J., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat. 34, 199–205 (1963)CrossRefGoogle Scholar
  10. Ambiguity models and theMachina paradoxes: Baillon, A., l’Haridon, O., Placido, L. Am. Econ. Rev. 101, 1547–1560 (2011)CrossRefGoogle Scholar
  11. Binmore, K., Stewart, L., Voorhoeve, A.: How much ambiguity aversion? Finding indifferences between Ellsbergs risky and ambiguous bets. J. Risk Uncertain. 45, 215–238 (2012)CrossRefGoogle Scholar
  12. Busemeyer, J.R., Bruza, P.D.: Quantum Models of Cognition and Decision. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  13. Busemeyer, J.R., Pothos, E.M., Franco, R., Trueblood, J.S.: A quantum theoretical explanation for probability judgment errors. Psychol. Rev. 118, 193–218 (2011)CrossRefGoogle Scholar
  14. Camerer, C., Weber, M.: Recent developments in modeling preferences: Uncertainty and ambiguity. J. Risk Uncertain. 5, 325–370 (1992)CrossRefGoogle Scholar
  15. Dirac, P.A.M.: Quantum Mechanics, 4th edn. Oxford University Press, London (1958)Google Scholar
  16. Einhorn, H., Hogarth, R.: Decision making under ambiguity. J. Bus. 59(Supplement), S225–S250 (1986)CrossRefGoogle Scholar
  17. Ellsberg, D.: Risk, ambiguity, and the Savage axioms. Q. J. Econ. 75, 643–669 (1961)CrossRefGoogle Scholar
  18. Ellsberg, D., Machina, M., Ritzberger, K., Yannelis, N. (Eds.): Symposium on the 50th Anniversary of the Ellsberg Paradox. Econ. Theory 48, 219–548 (2011)Google Scholar
  19. Epstein, L.G.: A definition of uncertainty aversion. Rev. Econ. Stud. 66, 579–608 (1999)CrossRefGoogle Scholar
  20. Epstein, L.G., Miao, J.: A two-person dynamic equilibrium under ambiguity. J. Econ. Dyn. Control 27, 1253–1288 (2003)CrossRefGoogle Scholar
  21. Etner, J., Jaleva, M., Tallon, J.M.: Decision Theory under Ambiguity. J. Econ. Surv. 26, 234–270 (2012)CrossRefGoogle Scholar
  22. Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)CrossRefGoogle Scholar
  23. Fox, C.R., Tversky, A.: Ambiguity aversion and comparative ignorance. Q. J. Econ. 110, 585–603 (1995)CrossRefGoogle Scholar
  24. Ghirardato, P., Maccheroni, F., Marinacci, M.: Differentiating ambiguity and ambiguity attitude. J. Econ. Theory 118, 133–173 (2004). (1995)Google Scholar
  25. Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm. In: Acemoglu, D., Arellano, M., Dekel, E. (eds.) Advances in Economics and Econometrics: Theory and Applications. Cambridge University Press, New York (2013)Google Scholar
  26. Gilboa, I., Schmeidler, D.: Maxmin expected utility with a non-unique prior. J. Math. Econ. 18, 141–153 (1989)CrossRefGoogle Scholar
  27. Gilboa, I., Postlewaite, A., Schmeidler, D.: Probabilities in economic modeling. J. Econ. Perspect. 22, 173–188 (2008)CrossRefGoogle Scholar
  28. Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. Indiana Univ. Math. J. 6, 885–893 (1957)CrossRefGoogle Scholar
  29. Hansen, L., Sargent, T.: Robust control and model uncertainty. Am. Econ. Rev. 91, 60–66 (2001)CrossRefGoogle Scholar
  30. Hansen, L., Sargent, T., Wang, N.: Robust permanent income and pricing with filtering. Macroecon. Dyn. 6, 40–84 (2002)CrossRefGoogle Scholar
  31. Haven, E., Khrennikov, A.Y.: Quantum Social Science. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  32. Ho, J., Keller, L.R., Keltyka, P.: Effects of outcome and probabilistic ambiguity on managerial choices. J. Risk Uncertain. 24, 47–74 (2002)CrossRefGoogle Scholar
  33. Karni, E.: Axiomatic foundations of expected utility and subjective probability. In: Machina, M.J., Viscusi, K. (eds.) Handbook of the Economics of Risk and Uncertainty, pp. 1–38. Elsevier, New York (2014)Google Scholar
  34. Khrennikov, A.Y.: Quantum version of Aumann’s approach to common knowledge: sufficient conditions of impossibility to agree on disagree. J. Math. Econ. 60, 89–104 (2015)CrossRefGoogle Scholar
  35. Khrennikov, A.Y., Basieva, I.: Possibility to agree on disagree from quantum information and decision making. J. Math. Psychol. 62, 1–15 (2014)CrossRefGoogle Scholar
  36. Klibanoff, P., Marinacci, M., Mukerji, S.: A smooth model of decision making under ambiguity. Econometrica 73, 1849–1892 (2005)CrossRefGoogle Scholar
  37. Klibanoff, P., Marinacci, M., Mukerji, S.: Definitions of ambiguous events and the smooth ambiguity model. Econ. Theory 48, 399–424 (2011)CrossRefGoogle Scholar
  38. Knight, F.H.: Risk, Uncertainty and Profit. Houghton Mifflin, Boston (1921)Google Scholar
  39. Kolmogorov, A.N.: Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse Der Mathematik (1933); Translated as: Foundations of Probability. Chelsea Publishing Company, New York (1950)Google Scholar
  40. La Mura, P.: Projective expected utility. J. Math. Psychol. 53, 408–414 (2009)CrossRefGoogle Scholar
  41. L’Haridon, O., Placido, L.: Betting on Machinas reflection example: an experiment on ambiguity. Theory Decis. 69, 375–393 (2010)CrossRefGoogle Scholar
  42. Machina, M.J.: ‘Expected utility/subjective probability’ analysis without the sure-thing principle or probabilistic sophistication. Econ. Theory 26, 1–62 (2005)CrossRefGoogle Scholar
  43. Machina, M.J.: Risk, ambiguity, and the dark-dependence axioms. Am. Econ. Rev. 99, 385–392 (2009)CrossRefGoogle Scholar
  44. Machina, M.J., Siniscalchi, M.: Ambiguity and ambiguity aversion. In: Machina, M.J., Viscusi, K. (eds.) Handbook of the Economics of Risk and Uncertainty, pp. 729–807. Elsevier, New York (2014)Google Scholar
  45. Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica 74, 1447–1498 (2006a)CrossRefGoogle Scholar
  46. McCrimmon, K., Larsson, S.: Utility theory: axioms versus paradoxes. In: Allais, M., Hagen, O. (eds.) Expected Utility Hypotheses and the Allais Paradox, pp. 27–145. Reidel, Dordrecht (1979)Google Scholar
  47. Pitowsky, I.: Quantum Probability, Quantum Logic. Lecture Notes in Physics, vol. 321. Springer, Berlin (1989)Google Scholar
  48. Pothos, E.M., Busemeyer, J.R.: Can quantum probability provide a new direction for cognitive modeling? Behav. Brain Sci. 36, 255–274 (2013)CrossRefGoogle Scholar
  49. Savage, L.: The Foundations of Statistics. Wiley, New York (1954). (revised and enlarged edition: Dover Publications, New York, 1972)Google Scholar
  50. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)CrossRefGoogle Scholar
  51. Slovic, P., Tversky, A.: Who accepts Savage’ s axiom? Behav. Sci. 19, 368–373 (1974)CrossRefGoogle Scholar
  52. Sozzo, S.: Conjunction and negation of natural concepts: a quantum-theoretic framework. J. Math. Psychol. 66, 83–102 (2015)CrossRefGoogle Scholar
  53. Tversky, A., Kahneman, D.: Judgment under uncertainty: Heuristics and biases. Science 185, 1124–1131 (1974)CrossRefGoogle Scholar
  54. Tversky, A., Kahneman, D.: Extension versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev. 90, 293–315 (1983)CrossRefGoogle Scholar
  55. Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992)CrossRefGoogle Scholar
  56. Tversky, A., Shafir, E.: The disjunction effect in choice under uncertainty. Psychol. Sci. 3, 305–309 (1992)CrossRefGoogle Scholar
  57. Viscusi, W.K., Chesson, H.: Hopes and fears: the conflicting effects of risk ambiguity. J. Risk Uncertain. 47, 153–178 (1999)Google Scholar
  58. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1944)Google Scholar
  59. Wang, Z., Solloway, T., Shiffrin, R.M., Busemeyer, J.R.: Context effects produced by question orders reveal quantum nature of human judgments. Proc. Natl. Acad. Sci. 111, 9431–9436 (2014)CrossRefGoogle Scholar
  60. Yearsley, J.M., Pothos, E.M.: Zeno’s paradox in decision-making. Proc. R. Soc. B 283(1828), 20160291 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Center Leo Apostel for Interdisciplinary Studies (CLEA)Free University of Brussels (VUB)BrusselsBelgium
  2. 2.School of Business and Research Centre IQSCSUniversity of LeicesterLeicesterUK

Personalised recommendations