# Purely subjective variational preferences

Research Article

First Online:

Received:

Accepted:

- 201 Downloads

## Abstract

*Variational preferences* (Maccheroni et al. in Econometrica 74:1447–1498, 2006) are an important class of ambiguity averse preferences, compatible with Ellsberg-type phenomena. In this paper, a new foundation for variational preferences is derived in a framework of two stages of purely subjective uncertainty. A similar foundation is obtained for purely subjective *maxmin expected utility* (Gilboa and Schmeidler in J Math Econ 18:141–153, 1989). By establishing their axiomatic foundations without the use of extraneous probabilities, the conceptual appeal and applicability of these ambiguity models is enhanced.

## Keywords

Variational preferences Ambiguity aversion Subjective uncertainty## JEL Classification

D81## Notes

### Acknowledgments

I am grateful for the comments of an anonymous reviewer. The usual disclaimer applies.

## References

- Abdellaoui, M., Baillon, A., Placido, L., Wakker, P.P.: The rich domain of uncertainty: source functions and their experimental implementation. Am. Econ. Rev.
**101**, 695–723 (2011)CrossRefGoogle Scholar - Abdellaoui, M., Wakker, P.P.: The likelihood method for decision under uncertainty. Theory Dec.
**58**, 3–76 (2005)CrossRefGoogle Scholar - Alon, S., Schmeidler, D.: Purely subjective maxmin expected utility. J. Econ. Theory
**152**, 382–412 (2014)CrossRefGoogle Scholar - Anscombe, F.J., Aumann, R.J.: A definition of subjective probability. Ann. Math. Stat.
**34**, 199–205 (1963)CrossRefGoogle Scholar - Camerer, C., Weber, M.: Recent developments in modeling preferences: uncertainty and ambiguity. J. Risk Uncertain.
**5**, 325–370 (1992)CrossRefGoogle Scholar - Casadesus-Masanell, R., Klibanoff, P., Ozdenoren, E.: Maxmin expected utility over Savage acts with a set of priors. J. Econ. Theory
**92**, 35–65 (2000)CrossRefGoogle Scholar - Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Rustichini, A.: Niveloids and their extension: risk measures on small domains. J. Math. Anal. Appl.
**413**, 343–360 (2014)CrossRefGoogle Scholar - Chateauneuf, A.: On the use of capacities in modeling uncertainty aversion and risk aversion. J. Math. Econ.
**22**(6), 343–369 (1991)CrossRefGoogle Scholar - Chew, S.H., Sagi, J.S.: Small worlds: modeling attitudes toward sources of uncertainty. J. Econ. Theory
**139**, 1–24 (2008)CrossRefGoogle Scholar - Chow, C.C., Sarin, R.K.: Comparative ignorance and the Ellsberg paradox. J. Risk Uncertain.
**22**(2), 129–139 (2001)CrossRefGoogle Scholar - Ellsberg, D.: Risk, ambiguity and the Savage axioms. Q. J. Econ.
**75**, 643–669 (1961)CrossRefGoogle Scholar - Ergin, H., Gul, F.: A theory of subjective compound lotteries. J. Econ. Theory
**144**(3), 899–929 (2009)CrossRefGoogle Scholar - Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)Google Scholar
- Fox, C.R., Tversky, A.: Ambiguity aversion and comparative ignorance. Q. J. Econ.
**110**, 585–603 (1995)CrossRefGoogle Scholar - Ghirardato, P., Maccheroni, F., Marinacci, M., Siniscalchi, M.: A subjective spin on roulette wheels. Econometrica
**71**(6), 1897–1908 (2003)CrossRefGoogle Scholar - Ghirardato, P., Marinacci, M.: Risk, ambiguity, and the separation of utility and beliefs. Math. Oper. Res.
**26**, 864–890 (2001)CrossRefGoogle Scholar - Gilboa, I.: Rationality and the Bayesian paradigm. J. Econ. Methodol.
**22**(3), 312–334 (2014)CrossRefGoogle Scholar - Gilboa, I., Postlewaite, A., Schmeidler, D.: Rationality of belief. Synthese
**187**, 11–31 (2012)CrossRefGoogle Scholar - Gilboa, I., Marinacci, M.: Ambiguity and the bayesian paradigm. In: Acemoglu, D., Arellano, M., Dekel, E. (eds.) Advances in Economics and Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society. Cambridge, New York (2013)Google Scholar
- Gilboa, I., Schmeidler, D.: Maxmin expected utility with a non-unique prior. J. Math. Econ.
**18**, 141–153 (1989)CrossRefGoogle Scholar - Halevy, Y.: Ellsberg revisited: an experimental study. Econometrica
**75**, 503–536 (2007)CrossRefGoogle Scholar - Hansen, L.P., Sargent, T.J.: Robust control and model uncertainty. Am. Econ. Rev.
**91**, 60–66 (2001)CrossRefGoogle Scholar - Heath, C., Tversky, A.: Preference and belief: ambiguity and competence in choice under uncertainty. J. Risk Uncertain.
**4**, 5–28 (1991)CrossRefGoogle Scholar - Klibanoff, P., Marinacci, M., Mukerji, S.: A smooth model of decision making under uncertainty. Econometrica
**6**, 1849–1892 (2005)CrossRefGoogle Scholar - Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement, vol. I: Additive and Polynomial Representations. Academic, New York (1971)Google Scholar
- Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness, and the variational representation of preferences. Econometrica
**74**, 1447–1498 (2006)CrossRefGoogle Scholar - Machina, M.J.: Event-separability in the Ellsberg urn. Econ. Theory
**48**, 425–436 (2011)CrossRefGoogle Scholar - Machina, M.J., Schmeidler, D.: A more robust definition of subjective probability. Econometrica
**60**, 745–780 (1992)CrossRefGoogle Scholar - Nau, R.: Uncertainty aversion with second-order utilities and probabilities. Manag. Sci.
**52**, 136–145 (2006)CrossRefGoogle Scholar - Sarin, R.K., Wakker, P.P.: A single-stage approach to Anscombe and Aumann’s expected utility. Rev. Econ. Stud.
**64**, 399–409 (1997)CrossRefGoogle Scholar - Savage, L.J.: The Foundation of Statistics. Wiley, New York (1954)Google Scholar
- Segal, U.: The Ellsberg paradox and risk aversion: an anticipated utility approach. Int. Econ. Rev.
**28**, 175–202 (1987)CrossRefGoogle Scholar - Seo, K.: Ambiguity and second-order belief. Econometrica
**77**, 1575–1605 (2009)CrossRefGoogle Scholar - Strzalecki, T.: Axiomatic foundations of multiplier preferences. Econometrica
**79**, 47–73 (2011)CrossRefGoogle Scholar - Trautmann, S., Wakker, P.P.: Making the Anscombe-Aumann approach suited for descriptive applications. Mimeo (2015)Google Scholar
- Wakker, P.P.: Testing and characterizing properties of nonadditive measures through violations of the sure-thing principle. Econometrica
**69**, 1039–1059 (2001)CrossRefGoogle Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 2016