Economic Theory

, Volume 61, Issue 1, pp 147–167 | Cite as

Rationalizability in general situations

  • Yi-Chun Chen
  • Xiao Luo
  • Chen Qu
Research Article


The main purpose of this paper is to present an analytical framework that can be used to study rationalizable strategic behavior in general situations—i.e., arbitrary strategic games with various modes of behavior. We show that, under mild conditions, the notion of rationalizability defined in general situations has nice properties similar to those in finite games. The major features of this paper are (1) our approach does not require any kind of technical assumptions on the structure of the game, and (2) the analytical framework provides a unified treatment of players’ general preferences, including expected utility as a special case. In this paper, we also investigate the relationship between rationalizability and Nash equilibrium in general games.


Strategic games General preferences Rationalizability Common knowledge of rationality Nash equilibrium 

JEL Classification

C70 D81 


  1. Apt, K.R.: The many faces of rationalizability. B.E. J. Theor. Econ. 7, Article 18 (2007)Google Scholar
  2. Apt, K.R., Zvesper, J.A.: The role of monotonicity in the epistemic analysis of strategic games. Games 1, 381–394 (2010)CrossRefGoogle Scholar
  3. Arieli, I.: Rationalizability in continuous games. J. Math. Econ. 46, 912–924 (2010)CrossRefGoogle Scholar
  4. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1, 67–96 (1974)CrossRefGoogle Scholar
  5. Aumann, R.J.: Agreeing to disagree. Ann. Stat. 4, 1236–1239 (1976)CrossRefGoogle Scholar
  6. Aumann, R.J.: Interactive epistemology I: knowledge. Int. J. Game Theory 28, 263–300 (1999)CrossRefGoogle Scholar
  7. Aumann, R.J., Brandenburger, A.: Epistemic conditions for Nash equilibrium. Econometrica 63, 1161–1180 (1995)CrossRefGoogle Scholar
  8. Basu, K., Weibull, J.: Strategy subsets closed under rational behavior. Econ. Lett. 36, 141–146 (1991)CrossRefGoogle Scholar
  9. Bergemann, D., Morris, S.: Robust implementation: the role of large type space. In: Cowles Foundation Discussion Paper No. 1519 (2005a)Google Scholar
  10. Bergemann, D., Morris, S.: Robust mechanism design. Econometrica 73, 1521–1534 (2005b)CrossRefGoogle Scholar
  11. Bergemann, D., Morris, S., Tercieux, O.: Rationalizable implementation. J. Econ. Theory 146, 1253–1274 (2011)CrossRefGoogle Scholar
  12. Bernheim, B.D.: Rationalizable strategic behavior. Econometrica 52, 1007–1028 (1984)CrossRefGoogle Scholar
  13. Bewley, T.: Knightian uncertainty theory: Part I. In: Cowles Foundation Discussion Paper No. 807, Yale University (1986)Google Scholar
  14. Blume, L., Brandenburger, A., Dekel, E.: Lexicographic probabilities and choice under uncertainty. Econometrica 59, 61–79 (1991)CrossRefGoogle Scholar
  15. Borgers, T.: Pure strategy dominance. Econometrica 61, 423–430 (1993)CrossRefGoogle Scholar
  16. Brandenburger, A.: The power of paradox: some recent developments in interactive epistemology. Int. J. Game Theory 35, 465–492 (2007)CrossRefGoogle Scholar
  17. Brandenburger, A., Dekel, D.: Rationalizability and correlated equilibria. Econometrica 55, 1391–1402 (1987)CrossRefGoogle Scholar
  18. Brandenburger, A., Dekel, D.: Hierarchies of beliefs and common knowledge. J. Econ. Theory 59, 189–198 (1993)CrossRefGoogle Scholar
  19. Brandenburger, A., Friedenberg, A., Keisler, H.J.: Fixed Points in Epistemic Game Theory. Mimeo, NYU (2011)Google Scholar
  20. Camerer, C., Weber, M.: Recent developments in modeling preferences: uncertainty and ambiguity. J Risk Uncertain. 5, 325–370 (1992)CrossRefGoogle Scholar
  21. Chen, Y.C., Long, N.V., Luo, X.: Iterated strict dominance in general games. Games Econ. Behav. 61, 299–315 (2007)CrossRefGoogle Scholar
  22. Chen, Y.C., Luo, X.: An indistinguishability result on rationalizability under general preferences. Econ. Theory 51, 1–12 (2012)CrossRefGoogle Scholar
  23. Eichberger, J., Kelsey, D.: Are the treasures of game theory ambiguous? Econ. Theory 48, 313–339 (2011)CrossRefGoogle Scholar
  24. Epstein, L.: Preference, rationalizability and equilibrium. J. Econ. Theory 73, 1–29 (1997)CrossRefGoogle Scholar
  25. Epstein, L., Wang, T.: “Beliefs about beliefs” without probabilities. Econometrica 64, 1343–1373 (1996)CrossRefGoogle Scholar
  26. Fagin, R., Geanakoplos, J., Halpern, J.Y., Vardi, M.Y.: The hierarchical approach to modeling knowledge and common knowledge. Int. J. Game Theory 28, 331–365 (1999)CrossRefGoogle Scholar
  27. Gilboa, I., Marinacci, M.: Ambiguity and the Bayesian paradigm. In: Acemoglu, D., Arellano, M., Dekel, E. (eds.) Advances in Economics and Econometrics: Tenth World Congress, vol. 1, pp. 179–242. Cambridge University Press, Cambridge (2013)CrossRefGoogle Scholar
  28. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18, 141–153 (1989)CrossRefGoogle Scholar
  29. Greenberg, J., Gupta, S., Luo, X.: Mutually acceptable courses of action. Econ. Theory 40, 91–112 (2009)CrossRefGoogle Scholar
  30. Harsanyi, J.: Games with incomplete information played by “Bayesian” players, I-III. Manag. Sci. 14, 159–182, 320–334, 486–502 (1967–68)Google Scholar
  31. Heifetz, A.: Common belief in monotonic epistemic logic. Math. Soc. Sci. 32, 109–123 (1996)CrossRefGoogle Scholar
  32. Heifetz, A.: Iterative and fixed point common belief. J. Philos. Log. 28, 61–79 (1999)CrossRefGoogle Scholar
  33. Heifetz, A., Samet, D.: Topology-free typology of beliefs. J. Econ. Theory 82, 324–341 (1998)CrossRefGoogle Scholar
  34. Jara-Moroni, P.: Rationalizability in games with a continuum of players. Games Econ. Behav. 75, 668–684 (2012)CrossRefGoogle Scholar
  35. Jech, T.: Set Theory. Springer, Berlin (2003)Google Scholar
  36. Kunimoto, T., Serrano, R.: A new necessary condition for implementation in iteratively undominated strategies. J. Econ. Theory 146, 2583–2595 (2011)CrossRefGoogle Scholar
  37. Lipman, B.L.: A note on the implication of common knowledge of rationality. Games Econ. Behav. 6, 114–129 (1994)CrossRefGoogle Scholar
  38. Luce, R.D., Raiffa, H.: Games and Decisions. Wiley, NY (1957)Google Scholar
  39. Luo, X.: General systems and \(\varphi \)-stable sets—a formal analysis of socioeconomic environments. J. Math. Econ. 36, 95–109 (2001)CrossRefGoogle Scholar
  40. Machina, M., Schmeidler, D.: A more robust definition of subjective probability. Econometrica 60, 745–780 (1992)CrossRefGoogle Scholar
  41. Mertens, J.F., Zamir, S.: Formulation of Bayesian analysis for games with incomplete information. Int. J. Game Theory 14, 1–29 (1985)CrossRefGoogle Scholar
  42. Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58, 1255–1278 (1990)CrossRefGoogle Scholar
  43. Monderer, D., Samet, D.: Approximating common knowledge with common beliefs. Games Econ. Behav. 1, 170–190 (1989)CrossRefGoogle Scholar
  44. Morris, S., Takahashi, S.: Common certainty of rationality revisited. In: Princeton Economic Theory Center Working Paper 010\_2011, Princeton University (2011)Google Scholar
  45. Moulin, H.: Dominance solvability and Cournot stability. Math. Soc. Sci. 7, 83–102 (1984)CrossRefGoogle Scholar
  46. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)Google Scholar
  47. Pearce, D.G.: Rationalizable strategic behavior and the problem of perfection. Econometrica 52, 1029–1051 (1984)CrossRefGoogle Scholar
  48. Perea, A.: Epistemic Game Theory: Reasoning and Choice. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  49. Reny, P.: On the existence of pure and mixed strategy Nash equilibrium in discontinuous games. Econometrica 67, 1029–1056 (1999)CrossRefGoogle Scholar
  50. Royden, H.L.: Real Analysis. The Macmillan Company, NY (1968)Google Scholar
  51. Savage, L.: The Foundations of Statistics. Wiley, NY (1954)Google Scholar
  52. Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)CrossRefGoogle Scholar
  53. Stinchcombe, M.B.: Countably additive subjective probabilities. Rev. Econ. Stud. 64, 125–146 (1997)CrossRefGoogle Scholar
  54. Tan, T., Werlang, S.: The Bayesian foundations of solution concepts of games. J. Econ. Theory 45, 370–391 (1988)CrossRefGoogle Scholar
  55. Vannetelbosch, V.J.: Rationalizability and equilibrium in N-person sequential bargaining. Econ. Theory 14, 353–371 (1999)CrossRefGoogle Scholar
  56. Yu, H.M.: Rationalizability and the Theory of Large Games (Ph.D. Dissertation). Johns Hopkins University (2010)Google Scholar
  57. Yu, H.M.: Rationalizability in large games. Econ. Theory 55, 457–479 (2014)CrossRefGoogle Scholar
  58. Zimper, A.: Uniqueness conditions for strongly point-rationalizable solutions to games with metrizable strategy sets. J. Math. Econ. 46, 729–751 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of EconomicsNational University of SingaporeSingaporeSingapore
  2. 2.Department of EconomicsBI Norwegian Business SchoolOsloNorway

Personalised recommendations