Economic Theory

, Volume 61, Issue 3, pp 497–513 | Cite as

Existence of Walrasian equilibria with discontinuous, non-ordered, interdependent and price-dependent preferences

Research Article

Abstract

We generalize the classical equilibrium existence theorems by dispensing with the assumption of continuity of preferences. Our new existence results allow us to dispense with the interiority assumption on the initial endowments. Furthermore, we allow for non-ordered, interdependent and price-dependent preferences.

Keywords

Continuous inclusion property Abstract economy Existence of Walrasian equilibria 

JEL Classification

C62 D51 

References

  1. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer, Berlin (2006)Google Scholar
  2. Arrow, K.J., Debreu, G.: Existence of an equilibrium for a competitive economy. Econometrica 22, 265–290 (1954)CrossRefGoogle Scholar
  3. Araujo, A., Novinski, R., Páscoa, M.R.: General equilibrium, wariness and efficient bubbles. J. Econ. Theory 146, 785–811 (2011)CrossRefGoogle Scholar
  4. Barelli, P., Meneghel, I.: A note on the equilibrium existence problem in discontinuous game. Econometrica 80, 813–824 (2013)Google Scholar
  5. Bewley, T.: Existence of equilibria in economies with infinitely many commodities. J. Econ. Theory 4, 514–540 (1972)CrossRefGoogle Scholar
  6. Borglin, A., Keiding, H.: Existence of equilibrium actions and of equilibrium: a note on the ‘new’ existence theorems. J. Math. Econ. 3, 313–316 (1976)CrossRefGoogle Scholar
  7. Carmona, G.: Symposium on: existence of Nash equilibria in discontinuous games. Econ. Theory 48, 1–4 (2011)CrossRefGoogle Scholar
  8. Carmona, G., Podczeck, K.: Existence of Nash equilibrium in ordinal games with discontinuous preferences. Working paper 2015Google Scholar
  9. Dasgupta, P., Maskin, E.: The existence of equilibrium in discontinuous economic games. Part I. Theory Rev. Econ. Stud. 53, 1–26 (1986)CrossRefGoogle Scholar
  10. Debreu, G.: A social equilibrium existence theorem. Proc. Natl. Acad. Sci. 38, 886–893 (1952)CrossRefGoogle Scholar
  11. Gale, D., Mas-Colell, A.: An equilibrium existence theorem for a general model without ordered preferences. J. Math. Econ. 2, 9–15 (1975)CrossRefGoogle Scholar
  12. He, W., Yannelis, N.C.: Equilibria with discontinuous preferences. Working paper, The University of Iowa, 2014Google Scholar
  13. Mas-Colell, A.: An equilibrium existence theorem without complete or transitive preferences. J. Math. Econ. 1, 237–246 (1974)CrossRefGoogle Scholar
  14. Mas-Colell, A.: The price equilibrium existence problem in topological vector lattices. Econometrica 54, 1039–1053 (1986)CrossRefGoogle Scholar
  15. McLennan, A., Monteiro, P.K., Tourky, R.: Games with discontinuous payoffs: a strengthening of Reny’s existence theorem. Econometrica 79, 1643–1664 (2011)CrossRefGoogle Scholar
  16. McKenzie, L.W.: On equilibrium in Graham’s model of world trade and other competitive systems. Econometrica 22, 147–161 (1954)CrossRefGoogle Scholar
  17. McKenzie, L.W.: Competitive equilibrium with dependent consumer preferences. In: Proceedings of the Second Symposium in Linear Programming, Vol. 1, Washington 1955Google Scholar
  18. Michael, E.: A note on paracompact spaces. Proc. Am. Math. Soc. 4, 831–838 (1953)CrossRefGoogle Scholar
  19. Michael, E.: Continuous selections I. Ann. Math. 63, 361–382 (1956)CrossRefGoogle Scholar
  20. Nash, J.F.: Equilibrium points in N-person games. Proc. Nat. Acad. Sci. 36, 48–49 (1950)CrossRefGoogle Scholar
  21. Podczeck, K., Yannelis, N.C.: Equilibrium theory with asymmetric information and with infinitely many commodities. J. Econ. Theory 141, 152–183 (2008)CrossRefGoogle Scholar
  22. Prokopovych, P.: On equilibrium existence in payoff secure games. Econ. Theory 48, 5–16 (2011)CrossRefGoogle Scholar
  23. Prokopovych, P.: The single deviation property in games with discontinuous payoffs. Econ. Theory 53, 383–402 (2013)CrossRefGoogle Scholar
  24. Prokopovych, P.: Majorized correspondences and equilibrium existence in discontinuous games. Econ. Theory (2015).doi:10.1007/s00199-015-0874-y
  25. Reny, P.J.: On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica 67, 1029–1056 (1999)CrossRefGoogle Scholar
  26. Reny, P.J.: Nash equilibrium in discontinuous games. Becker Friedman Institute working paper, 2013–004. https://econresearch.uchicago.edu/sites/econresearch.uchicago.edu/files/BFI_2013-004
  27. Scalzo, V.: On the existence of maximal elements, fixed points and equilibria of generalized games in a fuzzy environment. Fuzzy Sets Syst. (2015). doi:10.1016/j.fss.2015.02.006
  28. Shafer, W.J., Sonnenschein, H.: Equilibrium in abstract economies without ordered preferences. J. Math. Econ. 2, 345–348 (1975)CrossRefGoogle Scholar
  29. Shafer, W.J.: Equilibrium in economies without ordered preferences or free disposal. J. Math. Econ. 3, 135–137 (1976)CrossRefGoogle Scholar
  30. Toussaint, S.: On the existence of equilibria in economies with infinitely many commodities and without ordered preferences. J. Econ. Theory 33, 98–115 (1984)CrossRefGoogle Scholar
  31. Wu, X., Shen, S.: A further generalization of Yannelis–Prabhakar’s continuous selection theorem and its applications. J. Math. Anal. Appl. 197, 61–74 (1996)CrossRefGoogle Scholar
  32. Yannelis, N.C., Prabhakar, N.D.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econ. 12, 233–245 (1983)CrossRefGoogle Scholar
  33. Yannelis, N.C., Zame, W.R.: Equilibria in Banach lattices without ordered preferences. J. Math. Econ. 15, 85–110 (1986)CrossRefGoogle Scholar
  34. Yannelis, N.C.: Equilibria in noncooperative models of competition. J. Econ. Theory 41, 96–111 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Economics, Henry B. Tippie College of BusinessThe University of IowaIowa CityUSA

Personalised recommendations