Skip to main content

Purification and roulette wheels


We use concepts introduced by Aumann more than 30 years ago to throw new light on purification in games with extremely dispersed private information. We show that one can embed payoff-irrelevant randomization devices in the private information of players and use these randomization devices to implement mixed strategies as deterministic functions of the private information. This approach gives rise to very short and intuitive proofs for a number of purification results that previously required sophisticated methods from functional analysis or nonstandard analysis. We use our methods to prove the first general purification theorem for games with private information in which a player’s payoffs can depend in arbitrary ways on events in the private information of other players and in which we allow for shared information in a general way.

This is a preview of subscription content, access via your institution.


  1. 1.

    We do not discuss purification based on perturbing the game as in Harsanyi (1973) and Govindan et al (2003). See Morris (2008) for a comparison of these approaches.

  2. 2.

    See for example Milgrom and Weber (1985) and Balder (1988).

  3. 3.

    A far reaching generalization of Aumann’s framework can be found in Grant et al (2013), where the authors are able to prove the existence of pure strategy equilibria by employing a novel fixed-point theorem from Meneghel and Tourky (2013), in which convexity assumptions are replaced by a decomposability assumption from nonlinear analysis. They obtain pure strategy equilibria in Bayesian games directly without purifying mixed strategy equilibria. It is not clear to us whether a general purification result would hold in their framework, as their assumptions are not directly comparable to ours.

  4. 4.

    Terminology varies. See footnote 4 in Wang and Zhang (2012) for an overview over the various concepts that are equivalent to what we call super-atomless.

  5. 5.

    This result generalizes Theorem 15 in Carmona and Podczeck (2013), which is used there for purifying mixed equilibria in games with a continuum of players.

  6. 6.

    For equilibrium existence results in the framework of states of nature instead of the formulation in terms of types, see Yannelis and Rustichini (1991).

  7. 7.

    We actually never use boundedness, but it ensures that expected utility is well defined. Clearly, weaker assumptions would do.

  8. 8.

    Fu has drawn attention to differences between information that is payoff-relevant and other forms of information, and used this to obtain a purification result in the classical finite-action setting in Fu (2008). He takes the categorization of forms of information to be basic. In our view, payoff-relevance should be derived from the structure of the payoff-functions as we do here.

  9. 9.

    The more involved notion of saturation for adapted stochastic processes introduced in Hoover and Keisler (1984) gives rise to a much more restricted class of probability spaces.


  1. Aumann, R.J.: Mixed and behavior strategies in infinite extensive games. In: Dresher, M., Shapley, L.S., Tucker, A.W. (eds.) Advances in Game Theory, pp. 627–650. Princeton Univ. Press, Princeton, NJ (1964)

  2. Aumann, R.J.: Subjectivity and correlation in randomized strategies. J. Math. Econ. 1(1), 67–96 (1974)

    Article  Google Scholar 

  3. Balder, E.J.: Generalized equilibrium results for games with incomplete information. Math. Oper. Res. 13(2), 265–276 (1988). doi:10.1287/moor.13.2.265

    Article  Google Scholar 

  4. Balder, E.J.: Comments on purification in continuum games. Int. J. Game Theory 37(1), 73–92 (2008). doi:10.1007/s00182-007-0094-1

    Article  Google Scholar 

  5. Bogachev, V.I.: Measure Theory, Vol. I, II. Springer, Berlin (2007). doi:10.1007/978-3-540-34514-5

    Google Scholar 

  6. Carmona, G., Podczeck, K.: On the existence of pure-strategy equilibria in large games. J. Econ. Theory 144(3), 1300–1319 (2009). doi:10.1016/j.jet.2008.11.009

    Article  Google Scholar 

  7. Carmona, G., Podczeck, K.: Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions, Mimeo (2013)

  8. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

  9. Dvoretzky, A., Wald, A., Wolfowitz, J.: Elimination of randomization in certain problems of statistics and of the theory of games. Proc. Natl. Acad. Sci. USA 36, 256–260 (1950)

    Article  Google Scholar 

  10. Dvoretzky, A., Wald, A., Wolfowitz, J.: Elimination of randomization in certain statistical decision procedures and zero-sum two-person games. Ann. Math. Stat. 22, 1–21 (1951)

    Article  Google Scholar 

  11. Fajardo, S., Keisler, H.J.: Model Theory of Stochastic Processes. Lecture Notes in Logic, vol. 14. Association for Symbolic Logic, Urbana, IL (2002)

  12. Fremlin, D.H.: Measure Theory, Vol. 4: Topological measure spaces. Part I, II. Corrected second printing of the 2003 original., corrected second printing of the 2003 original edn. Colchester: Torres Fremlin (2006)

  13. Fremlin, D.H.: Measure Theory, Vol. 5. Set-theoretic measure theory. Part I, II. Torres Fremlin, Colchester (2008)

  14. Fremlin, D.H.: Measure Theory, Vol. 2: Broad Foundations. Torres Fremlin, Colchester (2010)

  15. Fu, H.: Mixed-strategy equilibria and strong purification for games with private and public information. Econ. Theory 37(3), 521–532 (2008). doi:10.1007/s00199-007-0315-7

    Article  Google Scholar 

  16. Govindan, S., Reny, P.J., Robson, A.J.: A short proof of harsanyi’s purification theorem. Games Econ. Behav. 45(2), 369–374 (2003). doi:10.1016/S0899-8256(03)00149-0. issue in honor of Robert W. Rosenthal

    Article  Google Scholar 

  17. Grant, S., Meneghel, I., Tourky, R.: Savage games. (2013)

  18. Harsanyi, J.C.: Games with randomly disturbed payoffs: a new rationale for mixed-strategy equilibrium points. Int. J. Game Theory 2(1), 1–23 (1973)

    Article  Google Scholar 

  19. He, W., Sun, X.: On the diffuseness of incomplete information game. J. Math. Econ (0) (2014). doi:10.1016/j.jmateco.2014.01.004,

  20. He, W., Sun, X., Sun, Y.: Modeling infinitely many agents, Mimeo (2013)

  21. Hoover, D.N., Keisler, H.J.: Adapted probability distributions. Trans. Am. Math. Soc. 286(1), 159–201 (1984). doi:10.2307/1999401

    Article  Google Scholar 

  22. Keisler, H.J., Sun, Y.: Why saturated probability spaces are necessary. Adv. Math. 221(5), 1584–1607 (2009). doi:10.1016/j.aim.2009.03.003

    Article  Google Scholar 

  23. Khan, M.A., Rath, K.P.: On games with incomplete information and the dvoretsky–wald–wolfowitz theorem with countable partitions. J. Math. Econ. 45(12), 830–837 (2009). doi:10.1016/j.jmateco.2009.06.003

    Article  Google Scholar 

  24. Khan, M.A., Zhang, Y.: On sufficiently diffused information and finite-player games with private information. Technical report, working paper, Johns Hopkins University (2012)

  25. Khan, M.A., Rath, K.P., Sun, Y.: On a private information game without pure strategy equilibria. J. Math. Econ. 31(3), 341–359 (1999). doi:10.1016/S0304-4068(97)00063-3

    Article  Google Scholar 

  26. Khan, M.A., Rath, K.P., Sun, Y.: The dvoretzky–wald–wolfowitz theorem and purification in atomless finite-action games. Int. J. Game Theory 34(1), 91–104 (2006). doi:10.1007/s00182-005-0004-3

    Article  Google Scholar 

  27. Lindenstrauss, J.: A short proof of liapounoff’s convexity theorem. J. Math. Mech. 15, 971–972 (1966)

    Google Scholar 

  28. Loeb, P., Sun, Y.: Purification of measure-valued maps. Illin. J. Math. 50(1–4), 747–762 (2006).

  29. Loeb, P., Sun, Y.: Purification and saturation. Proc. Am. Math. Soc. 137(8), 2719–2724 (2009). doi:10.1090/S0002-9939-09-09818-9

    Article  Google Scholar 

  30. Maharam, D.: On homogeneous measure algebras. Proc. Natl. Acad. Sci. USA 28, 108–111 (1942)

    Article  Google Scholar 

  31. Mas-Colell, A.: On a theorem of schmeidler. J. Math. Econ. 13(3), 201–206 (1984). doi:10.1016/0304-4068(84)90029-6

    Article  Google Scholar 

  32. Meneghel, I., Tourky, R.: A fixed point theorem for closed-graphed decomposable-valued correspondences. ArXiv e-prints 1306, 3724 (2013)

  33. Milgrom, P.R., Weber, R.J.: Distributional strategies for games with incomplete information. Math. Oper. Res. 10(4), 619–632 (1985). doi:10.1287/moor.10.4.619

    Article  Google Scholar 

  34. Morris, S.: Purification. In: Durlauf, S.N., Blume, L.E. (eds.) The New Palgrave Dictionary of Economics. Palgrave Macmillan, Basingstoke (2008)

    Google Scholar 

  35. Podczeck, K.: On purification of measure-valued maps. Econom Theory 38(2), 399–418 (2009). doi:10.1007/s00199-007-0319-3

    Article  Google Scholar 

  36. Podczeck, K.: On existence of rich fubini extensions. Econ. Theory 45(1–2), 1–22 (2010). doi:10.1007/s00199-009-0458-9

    Article  Google Scholar 

  37. Radner, R., Rosenthal, R.W.: Private information and pure-strategy equilibria. Math. Oper. Res. 7(3), 401–409 (1982). doi:10.1287/moor.7.3.401

    Article  Google Scholar 

  38. Rustichini, A.: Mixing on function spaces. Econ. Theory 3(1), 183–191 (1993). doi:10.1007/BF01213701

    Article  Google Scholar 

  39. Rustichini, A., Yannelis, N.C.: What is perfect competition? In: Khan, M., Yannelis, N. (eds.) Equilibrium Theory in Infinite Dimensional Spaces, Studies in Economic Theory, vol. I, pp. 249–265. Springer, Berlin (1991). doi:10.1007/978-3-662-07071-0_11

    Chapter  Google Scholar 

  40. Schmeidler, D.: Equilibrium points of nonatomic games. J. Stat. Phys. 7, 295–300 (1973)

    Article  Google Scholar 

  41. Sun, Y.: The exact law of large numbers via fubini extension and characterization of insurable risks. J. Econ. Theory 126(1), 31–69 (2006). doi:10.1016/j.jet.2004.10.005

    Article  Google Scholar 

  42. Wang, J., Zhang, Y.: Purification, saturation and the exact law of large numbers. Econ. Theory 50(3), 527–545 (2012). doi:10.1007/s00199-010-0593-3

    Article  Google Scholar 

  43. Yannelis, N.C.: Debreu’s social equilibrium theorem with asymmetric information and a continuum of agents. Econ. Theory 38(2), 419–432 (2009) doi:10.1007/s00199-007-0246-3

  44. Yannelis N.C., Rustichini A (1991) Equilibrium points of non-cooperative random and Bayesian games. In: Aliprantis, C.D., Border, K.C., Luxemburg, W.A.J. (eds.) Positive Operators, Riesz Spaces, and Economics, Studies in Economic Theory, vol. 2, pp. 23–48. Springer, Berlin. doi:10.1007/978-3-642-58199-1_2

Download references

Author information



Corresponding author

Correspondence to Michael Greinecker.

Additional information

We are grateful to Rabeè Tourky and Nicholas Yannelis. Discussions with them on existence of pure-strategy equilibria and the relation between randomization and decomposability techniques inspired this research.



Proof of Lemma 8

As in the proof of Theorem 1, choose a \(\Sigma _{2}\)-measurable map \(w:\varOmega \rightarrow [0,1]\) so that \(\mu _{w}=\lambda \), and by Lemma 3, choose a \({\fancyscript{I}}\otimes {\fancyscript{B}}\)-measurable \(h:\varOmega \times [0,1]\rightarrow X\) so that \(f_{x}(\omega )(B_{x})=\lambda (h(\omega ,\cdot )^{-1}(B_{x}))\) for each \(B_{x}\in {\fancyscript{B}}(X)\) and each \(\omega \in \varOmega \). Let \(g_{x}=h\circ (\iota _{\varOmega },w)\) and note that \(g_{x}\) is \({\fancyscript{I}}\)-measurable, as \(\Sigma _{2}\subseteq {\fancyscript{I}}\).

Now pick any \(\Sigma _{1}\)-measurable function \(f_{y}:\varOmega \rightarrow {\fancyscript{M}}(Y)\). Note that by Lemma 2, \(\mu _{(\iota _{\varOmega },f_{y},w)}\!\upharpoonright \!\Sigma _{1}\otimes {\fancyscript{B}}(Y)\otimes {\fancyscript{B}}=\bigl (\mu _{(\iota _{\varOmega },f_{y})}\!\upharpoonright \!\Sigma _{1}\otimes {\fancyscript{B}}(Y)\bigr )\otimes \lambda \).

Now given any rectangle \(A\times B_{y}\times B_{x}\in \Sigma _{1}\otimes {\fancyscript{B}}(Y)\otimes {\fancyscript{B}}(X)\), we can calculate as follows, where the sixth equality follows by Fubini’s theorem, the seventh by the generalized version of Fubini’s theorem, and where \(\tilde{h}:\varOmega \times Y\times [0,1]\rightarrow X\) is given by setting \(\tilde{h}(\omega ,y,r)=h(\omega ,r)\), and \(\delta \) is used to denote a Dirac measure:

$$\begin{aligned}&\mu _{(\iota _{\varOmega },f_{y},g_{x})}(A\times B_{y}\times B_{x})\\&\quad =\int \limits _{A}f_{y}(\omega )(B_{y})\delta _{g_{x}(\omega )}(B_{x})\mathrm{d} \mu (\omega )\\&\quad =\int \limits _{A}f_{y}(\omega )(B_{y})\delta _{h(\omega ,w(\omega ))}(B_{x})\mathrm{d} \mu (\omega )\\&\quad =\int \limits _{A}f_{y}(\omega )(B_{y})\delta _{(\iota _{\varOmega }(\omega ),w(\omega ))}(h^{-1}(B_{x}))\mathrm{d} \mu (\omega )\\&\quad =\int \limits _{A}f_{y}(\omega )(B_{y})\delta _{\iota _{\varOmega }(\omega ))}\otimes \delta _{w(\omega )}(h^{-1}(B_{x}))\mathrm{d} \mu (\omega )\\&\quad =\mu _{(\iota _{\varOmega },f_{y},w)}\!\upharpoonright \!\Sigma _{1}\otimes {\fancyscript{B}}(Y)\otimes {\fancyscript{B}}\bigl (\tilde{h}^{-1}(B_{x})\cap (A\times B_{y}\times [0,1])\bigr )\\&\quad =\bigl (\mu _{(\iota _{\varOmega },f_{y})}\!\upharpoonright \!\Sigma _{1}\otimes {\fancyscript{B}}(Y)\bigr )\otimes \lambda \bigl (\tilde{h}^{-1}(B_{x})\cap (A\times B_{y}\times [0,1])\bigr )\\&\quad =\int \limits _{A\times B_{y}}\lambda (h(\omega ,\cdot )^{-1}(B_{x}))\mathrm{d}\mu _{(\iota _{\varOmega },f_{y})}\\&\quad =\int \limits _{A}f_{y}(\omega )(B_{y})\lambda (h(\omega ,\cdot )^{-1}(B_{x}))\mathrm{d}\mu (\omega )\\&\quad =\int \limits _{A}f_{y}(\omega )(B_{y})f_{x}(\omega )(B_{x})\mathrm{d}\mu (\omega )\\&\quad =\mu _{(\iota _{\varOmega },f_{y},f_{x})}(A\times B_{y}\times B_{x}). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Greinecker, M., Podczeck, K. Purification and roulette wheels. Econ Theory 58, 255–272 (2015).

Download citation


  • Purification
  • Games with incomplete information
  • Roulette wheels

JEL Classification

  • C72