Strategic games beyond expected utility

Abstract

This paper argues that Nash equilibrium is a solution where all strategic uncertainty has been resolved and, therefore, inappropriate to model situations that involve “ambiguity.” Instead, to capture what players will do in the presence of some strategic uncertainty, takes a solution concept that is closed under best replies. It is shown that such a solution concept, fixed sets under the best reply correspondence, exists for a class of games significantly wider than those games for which generalizations of Nash equilibrium exist. In particular, this solution can do without the expected utility hypothesis.

This is a preview of subscription content, access via your institution.

References

  1. Aliprantis C.D., Border K.C.: Infinite Dimensional Analysis (3rd edn.; 1st edn. 1999). Springer, Berlin (2006)

    Google Scholar 

  2. Allais M.: Le comportement de l’homme rationnel devant le risque, critique des postulats et axiomes de l’école Américaine. Econometrica 21, 503–546 (1953)

    Article  Google Scholar 

  3. Aumann R.J.: Mixed and behavior strategies in infinite extensive games. In: Dresher, M., Shapley, L.S., Tucker, A.W. (eds) Advances in Game Theory, Annals of Mathematics Study 52, pp. 627–650. Princeton University Press, Princeton (1964)

    Google Scholar 

  4. Aumann R.J., Brandenburger A.: Epistemic conditions for Nash equilibrium. Econometrica 63, 1161–1180 (1995)

    Article  Google Scholar 

  5. Ausubel L.M., Deneckere R.J.: A generalized theorem of the maximum. Econ Theory 3, 99–107 (1993)

    Article  Google Scholar 

  6. Basu K., Weibull J.W.: Strategy subsets closed under rational behavior. Econ Lett 36, 114–146 (1991)

    Article  Google Scholar 

  7. Berge C.: Topological Spaces. Oliver & Boyd, Edinburgh and London (1963)

    Google Scholar 

  8. Bernheim B.D.: Rationalizable strategic behavior. Econometrica 52, 1007–1028 (1984)

    Article  Google Scholar 

  9. Chateauneuf A., Eichberger J., Grant S.: Choice under uncertainty with the best and worst in mind: neo-additive capacities. J Econ Theory 137, 538–567 (2007)

    Article  Google Scholar 

  10. Cohen M.: Security level, potential level, expected utility: a three-criteria decision model under risk. Theory Decis 33, 101–134 (1992)

    Article  Google Scholar 

  11. Crawford V.P.: Equilibrium without independence. J Econ Theory 50, 127–154 (1990)

    Article  Google Scholar 

  12. Dow J., Werlang S.R.C.: Nash equilibrium under uncertainty: breaking down backward induction. J Econ Theory 64, 305–324 (1994)

    Article  Google Scholar 

  13. Eichberger J., Kelsey D.: Non-additive beliefs and strategic equilibria. Games Econ Behav 30, 183–215 (2000)

    Article  Google Scholar 

  14. Eichberger J., Kelsey D.: Optimism and Pessimism in Games. Unpublished manuscript, University of Heidelberg (2009)

    Google Scholar 

  15. Eichberger, J., Kelsey, D.: Are the Treasures of Game Theory Ambiguous? University of Heidelberg: Unpublished manuscript (2010)

  16. Ellsberg D.: Risk, ambiguity, and the savage axioms. Quart J Econ 75, 643–669 (1961)

    Article  Google Scholar 

  17. Gilboa I., Schmeidler D.: Maxmin expected utility with non-unique priors. J Math Econ 18, 141– 153 (1989)

    Article  Google Scholar 

  18. Glycopantis D., Muir A.: Nash equilibria with Knightian uncertainty; the case of capacities. Econ Theory 37, 147–159 (2008)

    Article  Google Scholar 

  19. Groes E., Jacobsen H.J., Sloth B., Tranæs T.: Nash equilibrium with lower probabilities. Theory Decis 44, 37–66 (1998)

    Article  Google Scholar 

  20. Harsanyi, J.C.: Games of incomplete information played by Bayesian players. I, II, and III. Manag Sci 14, 159–182, 320–334, 486–502 (1967–1968)

    Google Scholar 

  21. Kozhan R., Zarichnyi M.: Nash equilibria for games in capacities. Econ Theory 35, 321–331 (2008)

    Article  Google Scholar 

  22. Kuhn H.W.: Extensive games and the problem of information. In: Kuhn, H.W., Tucker, A.W. (eds) Contributions to the Theory of Games, vol. II, pp. 193–216. Princeton University Press, Princeton (1953)

    Google Scholar 

  23. Leininger W.: A generalization of the ‘Maximum Theorem’. Econ Lett 15, 309–313 (1984)

    Article  Google Scholar 

  24. Lo K.C.: Equilibrium in beliefs under uncertainty. J Econ Theory 71, 443–484 (1996)

    Article  Google Scholar 

  25. Machina M.J., Schmeidler D.: A more robust definition of subjective probability. Econometrica 60, 745–780 (1992)

    Article  Google Scholar 

  26. Marinacci M.: Ambiguous games. Games Econ Behav 31, 191–219 (2000)

    Article  Google Scholar 

  27. Nash J.F.: Equilibrium points in N-Person games. Proc Nat Acad Sci 36, 48–49 (1950)

    Article  Google Scholar 

  28. Nash J.F.: Non-cooperative games. Ann Math 54, 286–295 (1951)

    Article  Google Scholar 

  29. Pearce D.G.: Rationalizable strategic behavior and the problem of perfection. Econometrica 52, 1029–1050 (1984)

    Article  Google Scholar 

  30. Polak B.: Epistemic conditions for Nash equilibrium, and common knowledge of rationality. Econometrica 67, 673–676 (1999)

    Article  Google Scholar 

  31. Quiggin J.: A theory of anticipated utility. J Econ Behav Organ 3, 225–243 (1982)

    Article  Google Scholar 

  32. Ritzberger K.: On games under expected utility with rank dependent probabilities. Theory Decis 40, 1–27 (1996)

    Article  Google Scholar 

  33. Ryan M.J.: What do uncertainty-averse decision makers believe?. Econ Theory 20, 47–65 (2002)

    Article  Google Scholar 

  34. Sarin R., Wakker P.: A simple axiomatization of non-additive expected utility. Econometrica 60, 1255–1272 (1992)

    Article  Google Scholar 

  35. Schmeidler D.: Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  Google Scholar 

  36. Selten R.: Reexamination of the perfectness concept for equilibrium points in extensive games. Int J Game Theory 4, 25–55 (1975)

    Article  Google Scholar 

  37. von Neumann J., Morgenstern O.: Theory of Games and Economic Behavior, (3rd edn.; 1st edn. 1944). Princeton University Press, Princeton (1953)

    Google Scholar 

  38. Walker M.: A generalization of the maximum theorem. Int Econ Rev 20, 267–272 (1979)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Klaus Ritzberger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jungbauer, T., Ritzberger, K. Strategic games beyond expected utility. Econ Theory 48, 377–398 (2011). https://doi.org/10.1007/s00199-011-0638-2

Download citation

Keywords

  • Ambiguity
  • Fixed sets under the best reply correspondence
  • Nash equilibrium
  • Non-expected utility

JEL Classification

  • C6
  • C72
  • C79
  • D81