Basu S., Pollack R., Roy M.-F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)
Google Scholar
Bernstein D.N.: The number of roots of a system of equations. Funct Anal Appl 9, 183–185 (1975)
Article
Google Scholar
Bochnak J., Coste M., Roy M.-F.: Real Algebraic Geometry. Springer, Heidelberg (1998)
Google Scholar
Cox D., Little J., O’Shea D.: Ideals, Varieties, and Algorithms. Springer, Heidelberg (1997)
Google Scholar
Cox D., Little J., O’Shea D.: Using Algebraic Geometry. Springer, Heidelberg (1998)
Google Scholar
Datta, R.S.: Algebraic Methods In Game Theory. Ph.D. thesis, University of California at Berkeley (2003a)
Datta R.S.: Universality of Nash equilibria. Math Oper Res 28, 424–432 (2003b)
Article
Google Scholar
Datta, R.S.: Using computer algebra to find Nash equilibria. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 74–79 (electronic). ACM, New York (2003c)
Dickenstein A., Emiris I.Z. (2005) Solving Polynomial Equations. Springer, Heidelberg
Google Scholar
Gelfand I.M., Kapranov M.M., Zelevinsky A.V.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Basel (1994)
Book
Google Scholar
Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 2.0. A computer algebra system for polynomial computations. Centre for Computer Algebra, University of Kaiserslautern. http://www.singular.uni-kl.de (2001)
Harsanyi J.: Oddness of the number of equilibrium points: a new proof. Int J Game Theory 2, 235–250 (1973)
Article
Google Scholar
Herings P.J.-J., Peeters R.: A globally convergent algorithm to compute all Nash equilibria for n-person games. Ann Oper Res 137, 349–368 (2005)
Article
Google Scholar
Herings, P.J.-J., Peeters, R.: Homotopy methods to compute equilibria in game theory. Econ Theory (2009) (this issue)
Huber B., Sturmfels B.: A polyhedral method for solving sparse polynomial systems. Math Comput 64, 1541–1555 (1995)
Article
Google Scholar
Kouchnirenko A.G.: Newton polytopes and the Bezout theorem. Funct Anal Appl 10, 233–235 (1976)
Article
Google Scholar
Lazard D., Rouillier F.: Solving parametric polynomial systems. J Symb Comput 42, 636–667 (2007)
Article
Google Scholar
McKelvey R., McLennan A.: The maximal number of regular totally mixed Nash equilibria. J Econ Theory 72, 411–425 (1997)
Article
Google Scholar
McKelvey, R.D., McLennan, A.M., Turocy, T.L.: Gambit: Software tools for game theory, version 0.2006.01.20 (2006). Available at http://econweb.tamu.edu/gambit/
McLennan A.M.: The expected number of real roots of a multihomogeneous system of polynomial equations. Am J Math 124, 49–73 (2002)
Article
Google Scholar
Montes A.: A new algorithm for discussing Groebner bases with parameters. J Symb Comput 33, 183–208 (2002)
Article
Google Scholar
Osborne M.J., Rubinstein A.: A Course in Game Theory. MIT Press, Cambridge (1994)
Google Scholar
Porter R., Nudelman E., Shoham Y.: Simple search methods for finding a Nash equilibrium. Games Econ Behav 63, 642–662 (2008)
Article
Google Scholar
Sommese A.J., Wampler C.W.: The Numerical Solution of Systems of Polynomials Arising in Engineering and Science. World Scientific, Singapore (2005)
Google Scholar
Sturmfels B.: Solving Systems of Polynomial Equations. American Mathematical Society, Providence (2002)
Google Scholar
Torregrosa J.R., Jordán C., el Ghamry R.: The nonsingular matrix completion problem. Int J Contemp Math Sci 2, 349–355 (2007)
Google Scholar
Verschelde J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans Math Softw 25, 251–276 (1999)
Article
Google Scholar