Skip to main content

Children Crying at Birthday Parties. Why?

Abstract

We consider the problem of dividing a non-homogeneous one-dimensional continuum whose endpoints are topologically identified. Examples are the division of a birthday cake, the partition of a circular market, the assignment of sentry duty or medical call. We study the existence of rules satisfying requirements of efficiency, fairness (no-envy), and immunity to misrepresentation of preferences (strategy-proofness).

This is a preview of subscription content, access via your institution.

References

  1. Barbanel J. (2005) The geometry of efficient fair division. Cambridge University Press, Cambridge

    Google Scholar 

  2. Barbanel J., Brams S. (2004) Cake-division with minimal cuts: envy-free procedures for three persons, four persons, and beyond. Math Soc Sci 48, 251–270

    Article  Google Scholar 

  3. Barbanel, J., Brams, S. Cutting a pie is not a piece of cake. Mimeo 2005

  4. Berliant M., Dunz K., Thomson W. (1992) On the fair division of a heterogeneous commodity. J Math Econ 21, 201–216

    Article  Google Scholar 

  5. Brams, S., Jones, M., Klamler, C. Perfect cake-cutting procedures with money. Mimeo 2003

  6. Brams S., Taylor A. (1996). Fair division: from cake-cutting to dispute resolution. Cambridge University Press, Cambridge

    Google Scholar 

  7. Chun, Y. No-envy in queueing problems. Mimeo 2004

  8. Foley D. (1967) Resource allocation and the public sector. Yale Econo Essays 7, 45–98

    Google Scholar 

  9. Gibbard A. (1973) Manipulation of voting schemes. Econometrica 41, 587–601

    Article  Google Scholar 

  10. Hill T. (1983) Determining a fair border. Am Math Mon 90, 438–442

    Article  Google Scholar 

  11. Hurwicz, L. On the interaction between information and incentives in organizations. In: Krippendorff, K. (ed.) Communication and Control in Society pp. 123–147. NY: Scientific Publishers Inc. 1978

  12. Kolm S. (1988) Justice et Equité. Paris: Editions du Centre National de la Recherche Scientifique, 1972. English Edition, MIT Press, Cambridge

    Google Scholar 

  13. Maniquet F. (2003) A characterization of the Shapley value in queueing problems. J Econ Theory 109, 90–103

    Article  Google Scholar 

  14. Maskin E. (1999) Nash equilibrium and welfare optimality. Rev Econo Stud 66, 83–114

    Article  Google Scholar 

  15. Moulin H. (1987) The pure compensation problem: egalitarianism versus laissez-fairism. Q J Econ 101, 769–783

    Article  Google Scholar 

  16. Moulin, H. On scheduling fees to prevent merging, splitting and transferring of jobs. Mimeo 2004

  17. Pazner E., Schmeidler D. (1978) Egalitarian equivalent allocations: A, new concept of economic equity. Q J Econ 92, 671–687

    Article  Google Scholar 

  18. Robertson J., Webb W. (1998) Cake-cutting algorithms. AK Peters, Natick

    Google Scholar 

  19. Satterthwaite M. (1975) Strategy-proofness and Arrow’s conditions: existence and correspondence theorem for voting procedures and social choice functions. J Econ Theory 10, 187–217

    Article  Google Scholar 

  20. Satterthwaite M., Sonnenschein H. (1981) Strategy-proof allocation mechanisms at differentiable points. Rev Econ Stud 48, 587–597

    Article  Google Scholar 

  21. Schummer J. (1997) Strategy-proofness versus efficiency on restricted domains of exchange economies. Soc Choice Welfare 14, 47–56

    Article  Google Scholar 

  22. Steinhaus H. (1948) The problem of fair division. Econometrica 16, 101–104

    Google Scholar 

  23. Stromquist N. (1980) How to cut a cake fairly. Am Math Mon 87, 640–644

    Article  Google Scholar 

  24. Su F. (1999) Rental harmony: Sperner’s lemma in fair division. Am Math Mon 106, 930–942

    Article  Google Scholar 

  25. Suijs J. (1996) On incentive compatibility and budget balancedness in public decision making. Econ Design 2, 193–209

    Article  Google Scholar 

  26. Thomson W. (1983) The fair division of a fixed supply among a growing population. Math Oper Res 8, 19–326

    Article  Google Scholar 

  27. Thomson W. (1987). The vulnerability to manipulative behavior of economic mechanisms designed to select equitable and efficient outcomes. In: Groves T, Radner R., Reiter S. (eds). chap 14, pp 375–396. information, incentives and economic mechanisms. University of Minnesota Press, Minneapolis

    Google Scholar 

  28. Thomson W. (1995). Population-monotonic allocation rules. In: Barnett W.A., Moulin H., Salles M., Schofield N. (eds). Social choice, welfare and ethics. Cambridge University Press, cambridge

    Google Scholar 

  29. Thomson W. (1999) Welfare-domination and preference-replacement: a survey and open questions. Soc Choice Welfare 16, 373–394

    Article  Google Scholar 

  30. Thomson, W. The fair division of time. Mimeo 2003

  31. Varian H. (1974) Equity, envy, and efficiency. J Econ Theory 9, 63–91

    Article  Google Scholar 

  32. Weller D. (1985) Fair division of measurable space. J Math Econ 14, 5–17

    Article  Google Scholar 

  33. Zhou L. (1991) Inefficiency of strategy-proof allocation mechanisms in pure exchange economies. Soc Choice Welfare 8, 247–254

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to William Thomson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thomson, W. Children Crying at Birthday Parties. Why?. Economic Theory 31, 501–521 (2007). https://doi.org/10.1007/s00199-006-0109-3

Download citation

Keywords

  • Cake division
  • No-envy
  • Strategy-proofness

JEL Classification Numbers

  • D63
  • D70