Skip to main content

Regularity of pure strategy equilibrium points in a class of bargaining games


We develop an index theory for the Stationary Subgame Perfect (SSP) equilibrium set in a class of n-player \((n\ge 2)\) sequential bargaining games with probabilistic recognition rules. For games with oligarchic voting rules (a class that includes unanimity rule), we establish conditions on individual utilities that ensure that for almost all discount factors, the number of SSP equilibria is odd and the equilibrium correspondence lower-hemicontinuous. For games with general, monotonic voting rules, we show generic (in discount factors) determinacy of SSP equilibria under the restriction that the agreement space is of dimension one. For non-oligarchic voting rules and agreement spaces of higher finite dimension, we establish generic determinacy for the subset of SSP equilibria in pure strategies. The analysis also extends to the case of fixed delay costs. Lastly, we provide a sufficient condition for uniqueness of SSP equilibrium in oligarchic games.

This is a preview of subscription content, access via your institution.

Author information



Corresponding author

Correspondence to Tasos Kalandrakis.

Additional information

Received: 13 May 2004, Revised: 1 March 2005,

JEL Classification Numbers:

C62, C72, C78.

I thank John Duggan and participants of the 2003 annual meeting of the American Political Science Association, Philadelphia, PA, the Political Economy Seminar at Northwestern University, and the Economic Theory seminar at the University of Rochester for helpful comments.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kalandrakis, T. Regularity of pure strategy equilibrium points in a class of bargaining games. Economic Theory 28, 309–329 (2006).

Download citation

Keywords and Phrases:

  • Local uniqueness of equilibrium
  • Regularity
  • Sequential bargaining.