Skip to main content

Advertisement

Log in

Denosumab vs. bisphosphonates in primary osteoporosis: a meta-analysis of comparative safety in randomized controlled trials

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Denosumab and bisphosphonates for primary osteoporosis are generally well-tolerated, but their comparative safety remains unclear. We aimed to explore the comparative safety of denosumab and bisphosphonates in primary osteoporosis. Databases such as PubMed and Google Scholar were searched for relevant peer-reviewed randomized controlled trials published in English (as of December 2023). Trials comparing adverse events (AE) between denosumab and bisphosphonates in patients with primary osteoporosis were investigated. Data were pooled using a fixed- or random-effects model to determine the risk ratios (RR) and 95% confidence intervals (CIs) for various AEs in patients treated with denosumab in comparison to patients treated with bisphosphonates. Eleven trials (5,545 patients; follow-up period: 12–24 months) were included in this meta-analysis. All trials had a risk of bias (e.g., reporting bias linked to secondary endpoints and selection bias linked to random allocation). In comparison to bisphosphonates, denosumab was significantly associated with less withdrawal due to AEs (RR = 0.49; 95% CI 0.34–0.71), more five-point major adverse cardiovascular events (RR = 2.05; 95% CI 1.03–4.09), more cardiovascular AEs (RR = 1.61; 95% CI 1.07–2.41), more infections (RR = 1.14; 95% CI 1.02–1.27), more upper respiratory tract infections (RR = 1.56; 95% CI 1.08–2.25), less vertebral fractures (RR = 0.54; 95% CI 0.31–0.93), and less abdominal pain (RR = 0.44;95% CI 0.22–0.87). We explored the comparative safety of denosumab and bisphosphonates for primary osteoporosis, some of which could be attributed to their beneficial effects. However, all trials had a risk of bias. Further investigations are required to confirm our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. LeBoff MS, Greenspan SL, Insogna KL et al (2022) The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 33:2049–2102. https://doi.org/10.1007/s00198-021-05900-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Qaseem A, Forciea MA, McLean RM et al (2017) Treatment of low bone density or osteoporosis to prevent fractures in men and women: a clinical practice guideline update from the American College of Physicians. Ann Intern Med 166:818–839. https://doi.org/10.7326/M15-1361

    Article  PubMed  Google Scholar 

  3. Lacey DL, Boyle WJ, Simonet WS et al (2012) Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11:401–419. https://doi.org/10.1038/nrd3705

    Article  CAS  PubMed  Google Scholar 

  4. Drake MT, Clarke BL, Khosla S (2008) Bisphosphonates: Mechanism of action and role in clinical practice. Mayo Clin Proc 83:1032–1045. https://doi.org/10.4065/83.9.1032

    Article  CAS  PubMed  Google Scholar 

  5. Wu J, Zhang Q, Yan G, Jin X (2018) Denosumab compared to bisphosphonates to treat postmenopausal osteoporosis: a meta-analysis. J Orthop Surg Res 13:194. https://doi.org/10.1186/s13018-018-0865-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lyu H, Jundi B, Xu C et al (2019) Comparison of denosumab and bisphosphonates in patients with osteoporosis: a meta-analysis of randomized controlled trials. J Clin Endocrinol Metab 104:1753–1765. https://doi.org/10.1210/jc.2018-02236

    Article  PubMed  Google Scholar 

  7. Lin T, Wang C, Cai XZ et al (2012) Comparison of clinical efficacy and safety between denosumab and alendronate in postmenopausal women with osteoporosis: a meta-analysis. Int J Clin Pract 66:399–408. https://doi.org/10.1111/j.1742-1241.2011.02806.x

    Article  CAS  PubMed  Google Scholar 

  8. Wang WY, Chen LH, Ma WJ, You RX (2023) Drug efficacy and safety of denosumab, teriparatide, zoledronic acid, and ibandronic acid for the treatment of postmenopausal osteoporosis: A network meta-analysis of randomized controlled trials. Eur Rev Med Pharmacol Sci 27:8253–68. https://doi.org/10.26355/eurrev_202309_33586

    Article  PubMed  Google Scholar 

  9. Migliorini F, Maffulli N, Colarossi G et al (2021) Effect of drugs on bone mineral density in postmenopausal osteoporosis: a Bayesian network meta-analysis. J Orthop Surg Res 16:533. https://doi.org/10.1186/s13018-021-02678-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mandema JW, Zheng J, Libanati C, Perez Ruixo JJ (2014) Time course of bone mineral density changes with denosumab compared with other drugs in postmenopausal osteoporosis: a dose-response-based meta-analysis. J Clin Endocrinol Metab 99:3746–3755. https://doi.org/10.1210/jc.2013-3795

    Article  CAS  PubMed  Google Scholar 

  11. Silva-Fernández L, Rosario MP, Martínez-López JA, Carmona L, Loza E (2013) Denosumab for the treatment of osteoporosis: a systematic literature review. Reumatol Clin 9:42–52. https://doi.org/10.1016/j.reuma.2012.06.007

    Article  PubMed  Google Scholar 

  12. Yang L, Kang N, Yang JC et al (2019) Drug efficacies on bone mineral density and fracture rate for the treatment of postmenopausal osteoporosis: a network meta-analysis. Eur Rev Med Pharmacol Sci 23:2640–68. https://doi.org/10.26355/eurrev_201903_17414

    Article  CAS  PubMed  Google Scholar 

  13. Beaudoin C, Jean S, Bessette L et al (2016) Denosumab compared to other treatments to prevent or treat osteoporosis in individuals at risk of fracture: a systematic review and meta-analysis. Osteoporos Int 27:2835–2844. https://doi.org/10.1007/s00198-016-3607-6

    Article  CAS  PubMed  Google Scholar 

  14. Seeto AH, Abrahamsen B, Ebeling PR, Rodríguez AJ (2021) Cardiovascular safety of denosumab across multiple indications: A systematic review and meta-analysis of randomized trials. J Bone Miner Res 36:24–40. https://doi.org/10.1002/jbmr.4157

    Article  CAS  PubMed  Google Scholar 

  15. Catton B, Surangiwala S, Towheed T (2021) Is denosumab associated with an increased risk for infection in patients with low bone mineral density? A systematic review and meta-analysis of randomized controlled trials. Int J Rheum Dis 24:869–879. https://doi.org/10.1111/1756-185X.14101

    Article  CAS  PubMed  Google Scholar 

  16. Tan X, Wen F, Yang W et al (2019) Comparative efficacy and safety of pharmacological interventions for osteoporosis in postmenopausal women: a network meta-analysis (Chongqing, China). Menopause 26(8):929–939. https://doi.org/10.1097/GME.0000000000001321

    Article  PubMed  Google Scholar 

  17. Freemantle N, Cooper C, Diez-Perez A et al (2013) Results of indirect and mixed treatment comparison of fracture efficacy for osteoporosis treatments: a meta-analysis. Osteoporos Int 24:209–217. https://doi.org/10.1007/s00198-012-2068-9

    Article  CAS  PubMed  Google Scholar 

  18. Barrionuevo P, Kapoor E, Asi N et al (2019) Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: a network meta-analysis. J Clin Endocrinol Metab 104:1623–1630. https://doi.org/10.1210/jc.2019-00192

    Article  PubMed  Google Scholar 

  19. Albert SG, Reddy S (2017) Clinical evaluation of cost efficacy of drugs for treatment of osteoporosis: a meta-analysis. Endocr Pract 23:841–856. https://doi.org/10.4158/EP161678.RA

    Article  PubMed  Google Scholar 

  20. Li P, Wu X, Li Y, Huang J (2022) Denosumab versus bisphosphonates for the prevention of the vertebral fractures in men with osteoporosis: an updated network meta-analysis. Clin Invest Med 45:E14-22. https://doi.org/10.25011/cim.v45i3.38875

    Article  CAS  PubMed  Google Scholar 

  21. Murad MH, Drake MT, Mullan RJ et al (2012) Clinical review. Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J Clin Endocrinol Metab 97:1871–1880. https://doi.org/10.1210/jc.2011-3060

    Article  CAS  PubMed  Google Scholar 

  22. Migliore A, Broccoli S, Massafra U, Cassol M, Frediani B (2013) Ranking antireabsorptive agents to prevent vertebral fractures in postmenopausal osteoporosis by mixed treatment comparison meta-analysis. Eur Rev Med Pharmacol Sci 17:658–667

    CAS  PubMed  Google Scholar 

  23. Ayers C, Kansagara D, Lazur B et al (2023) Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: a living systematic review and network meta-analysis for the American College of Physicians. Ann Intern Med 176:182–195. https://doi.org/10.7326/M22-0684

    Article  PubMed  Google Scholar 

  24. Ding LL, Wen F, Wang H et al (2020) Osteoporosis drugs for prevention of clinical fracture in white postmenopausal women: a network meta-analysis of survival data. Osteoporos Int 31:961–971. https://doi.org/10.1007/s00198-019-05183-4

    Article  CAS  PubMed  Google Scholar 

  25. Yang XC, Deng ZH, Wen T et al (2016) Network meta-analysis of pharmacological agents for osteoporosis treatment and fracture prevention. Cell Physiol Biochem 40:781–795. https://doi.org/10.1159/000453138

    Article  CAS  PubMed  Google Scholar 

  26. Jin YZ, Lee JH, Xu B, Cho M (2019) Effect of medications on prevention of secondary osteoporotic vertebral compression fracture, non-vertebral fracture, and discontinuation due to adverse events: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 20:399. https://doi.org/10.1186/s12891-019-2769-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nayak S, Greenspan SL (2017) Osteoporosis treatment efficacy for men: a systematic review and meta-Analysis. J Am Geriatr Soc 65:490–495. https://doi.org/10.1111/jgs.14668

    Article  PubMed  Google Scholar 

  28. Zhang L, Pang Y, Shi Y et al (2015) Indirect comparison of teriparatide, denosumab, and oral bisphosphonates for the prevention of vertebral and nonvertebral fractures in postmenopausal women with osteoporosis. Menopause 22:1021–1025. https://doi.org/10.1097/GME.0000000000000466

    Article  PubMed  Google Scholar 

  29. Moshi MR, Nicolopoulos K, Stringer D et al (2023) The Clinical effectiveness of denosumab (Prolia®) for the treatment of osteoporosis in postmenopausal women, compared to bisphosphonates, selective estrogen receptor modulators (SERM), and placebo: a systematic review and network meta-analysis. Calcif Tissue Int 112:631–646. https://doi.org/10.1007/s00223-023-01078-z

    Article  CAS  PubMed  Google Scholar 

  30. Helas S, Goettsch C, Schoppet M et al (2009) Inhibition of receptor activator of NF-kappaB ligand by denosumab attenuates vascular calcium deposition in mice. Am J Pathol 175:473–478. https://doi.org/10.2353/ajpath.2009.080957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimamura M, Nakagami H, Osako MK et al (2014) OPG/RANKL/RANK axis is a critical inflammatory signaling system in ischemic brain in mice. Proc Natl Acad Sci U S A 111:8191–8196. https://doi.org/10.1073/pnas.1400544111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reid IR, Horne AM, Mihov B et al (2020) Effects of zoledronate on cancer, cardiac events, and mortality in osteopenic older women. J Bone Miner Res 35:20–27. https://doi.org/10.1002/jbmr.3860

    Article  CAS  PubMed  Google Scholar 

  33. Hewitt RE, Lissina A, Green AE et al (2005) The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139:101–111. https://doi.org/10.1111/j.1365-2249.2005.02665.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aviles RJ, Martin DO, Apperson-Hansen C et al (2003) Inflammation as a risk factor for atrial fibrillation. Circulation 108:3006–3010. https://doi.org/10.1161/01.CIR.0000103131.70301.4F

    Article  PubMed  Google Scholar 

  35. Van Wagoner DR, Nerbonne JM (2000) Molecular basis of electrical remodeling in atrial fibrillation. J Mol Cell Cardiol 32:1101–1117. https://doi.org/10.1006/jmcc.2000.1147

    Article  PubMed  Google Scholar 

  36. Rosenberg D, Avni T, Tsvetov G, Gafter-Gvili A, Diker-Cohen T (2021) Denosumab is not associated with risk of malignancy: systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 32:413–424. https://doi.org/10.1007/s00198-020-05704-6

    Article  CAS  PubMed  Google Scholar 

  37. Takegahara N, Kim H, Choi Y (2022) RANKL biology. Bone 159:116353. https://doi.org/10.1016/j.bone.2022.116353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Munoz MA, Fletcher EK, Skinner OP et al (2021) Bisphosphonate drugs have actions in the lung and inhibit the mevalonate pathway in alveolar macrophages. Elife 10:e72430. https://doi.org/10.7554/eLife.72430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Porras AG, Holland SD, Gertz BJ (1999) Pharmacokinetics of alendronate. Clin Pharmacokinet 36:315–328. https://doi.org/10.2165/00003088-199936050-00002

    Article  CAS  PubMed  Google Scholar 

  40. Lichtenberger LM, Romero JJ, Gibson GW, Blank MA (2000) Effect of bisphosphonates on surface hydrophobicity and phosphatidylcholine concentration of rodent gastric mucosa. Dig Dis Sci 45:1792–1801. https://doi.org/10.1023/a:1005574009856

    Article  CAS  PubMed  Google Scholar 

  41. U.S. Food and Drug Administration Drug Details. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails. Accessed 11 Apr 2024

  42. McClung MR, Lewiecki EM, Cohen SB et al (2006) Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354:821–831. https://doi.org/10.1056/NEJMoa044459

    Article  CAS  PubMed  Google Scholar 

  43. Brown JP, Prince RL, Deal C et al (2009) Comparison of the effect of denosumab and alendronate on BMD and biochemical markers of bone turnover in postmenopausal women with low bone mass: a randomized, blinded, phase 3 trial. J Bone Miner Res 24:153–161. https://doi.org/10.1359/jbmr.0809010

    Article  CAS  PubMed  Google Scholar 

  44. Seeman E, Delmas PD, Hanley DA et al (2010) Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res 25:1886–1894. https://doi.org/10.1002/jbmr.81

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kendler DL, McClung MR, Freemantle N et al (2011) Adherence, preference, and satisfaction of postmenopausal women taking denosumab or alendronate. Osteoporos Int 22:1725–1735. https://doi.org/10.1007/s00198-010-1378-z

    Article  CAS  PubMed  Google Scholar 

  46. Kendler DL, Roux C, Benhamou CL et al (2010) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res 25:72–81. https://doi.org/10.1359/jbmr.090716

    Article  CAS  PubMed  Google Scholar 

  47. Recknor C, Czerwinski E, Bone HG et al (2013) Denosumab compared with ibandronate in postmenopausal women previously treated with bisphosphonate therapy: a randomized open-label trial. Obstet Gynecol 121:1291–1299. https://doi.org/10.1097/AOG.0b013e318291718c

    Article  CAS  PubMed  Google Scholar 

  48. Kobayakawa T, Miyazaki A, Takahashi J, Nakamura Y (2022) Verification of efficacy and safety of ibandronate or denosumab for postmenopausal osteoporosis after 12-month treatment with romosozumab as sequential therapy: the prospective VICTOR study. Bone 162:116480. https://doi.org/10.1016/j.bone.2022.116480

    Article  CAS  PubMed  Google Scholar 

  49. Niimi R, Kono T, Nishihara A et al (2018) Efficacy of switching from teriparatide to bisphosphonate or denosumab: a prospective, randomized, open-label trial. JBMR Plus 2:289–294. https://doi.org/10.1002/jbm4.10054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roux C, Hofbauer LC, Ho PR et al (2014) Denosumab compared with risedronate in postmenopausal women suboptimally adherent to alendronate therapy: efficacy and safety results from a randomized open-label study. Bone 58:48–54. https://doi.org/10.1016/j.bone.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  51. Miller PD, Pannacciulli N, Brown JP et al (2016) Denosumab or zoledronic acid in postmenopausal women with osteoporosis previously treated with oral bisphosphonates. J Clin Endocrinol Metab 101:3163–3170. https://doi.org/10.1210/jc.2016-1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakamura T, Matsumoto T, Sugimoto T et al (2014) Clinical trials express: Fracture risk reduction with denosumab in Japanese postmenopausal women and men with osteoporosis: denosumab fracture intervention randomized placebo controlled trial (DIRECT). J Clin Endocrinol Metab 99:2599–2607. https://doi.org/10.1210/jc.2013-4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai G, Laslett LL, Aitken D et al (2018) Effect of zoledronic acid and denosumab in patients with low back pain and Modic change: a proof-of-principle trial. J Bone Miner Res 33:773–782. https://doi.org/10.1002/jbmr.3376

    Article  CAS  PubMed  Google Scholar 

  54. Tsai JN, Zhu Y, Foley K et al (2015) Comparative resistance to teriparatide-induced bone resorption with denosumab or alendronate. J Clin Endocrinol Metab 100:2718–2723. https://doi.org/10.1210/jc.2015-1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beck TJ, Lewiecki EM, Miller PD et al (2008) Effects of denosumab on the geometry of the proximal femur in postmenopausal women in comparison with alendronate. J Clin Densitom 11:351–359. https://doi.org/10.1016/j.jocd.2008.04.001

    Article  PubMed  Google Scholar 

  56. Palacios S, Agodoa I, Bonnick S et al (2015) Treatment satisfaction in postmenopausal women suboptimally adherent to bisphosphonates who transitioned to denosumab compared with risedronate or ibandronate. J Clin Endocrinol Metab 100:E487–E492. https://doi.org/10.1210/jc.2014-3594

    Article  CAS  PubMed  Google Scholar 

  57. Anastasilakis AD, Polyzos SA, Gkiomisi A et al (2015) Denosumab versus zoledronic acid in patients previously treated with zoledronic acid. Osteoporos Int 26:2521–2527. https://doi.org/10.1007/s00198-015-3174-2

    Article  CAS  PubMed  Google Scholar 

  58. Freemantle N, Satram-Hoang S, Tang ET et al (2012) Final results of the DAPS (Denosumab Adherence Preference Satisfaction) study: a 24-month, randomized, crossover comparison with alendronate in postmenopausal women. Osteoporos Int 23:317–326. https://doi.org/10.1007/s00198-011-1780-1

    Article  CAS  PubMed  Google Scholar 

  59. Brown JP, Roux C, Ho PR et al (2014) Denosumab significantly increases bone mineral density and reduces bone turnover compared with monthly oral ibandronate and risedronate in postmenopausal women who remained at higher risk for fracture despite previous suboptimal treatment with an oral bisphosphonate. Osteoporos Int 25:1953–1961. https://doi.org/10.1007/s00198-014-2692-7

    Article  CAS  PubMed  Google Scholar 

  60. Miller PD, Pannacciulli N, Malouf-Sierra J et al (2020) Efficacy and safety of denosumab vs. bisphosphonates in postmenopausal women previously treated with oral bisphosphonates. Osteoporos Int 31:181–191. https://doi.org/10.1007/s00198-019-05233-x

    Article  CAS  PubMed  Google Scholar 

  61. Lewiecki EM, Miller PD, McClung MR et al (2007) Two-year treatment with denosumab (AMG 162) in a randomized phase 2 study of postmenopausal women with low BMD. J Bone Miner Res 22:1832–1841. https://doi.org/10.1359/jbmr.070809

    Article  CAS  PubMed  Google Scholar 

  62. Miller PD, Bolognese MA, Lewiecki EM et al (2008) Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43:222–229. https://doi.org/10.1016/j.bone.2008.04.007

    Article  CAS  PubMed  Google Scholar 

  63. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  64. Eriksen MB, Frandsen TF (2018) The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review. J Med Libr Assoc 106:420–431. https://doi.org/10.5195/jmla.2018.345

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ryan R, Hill S, Prictor M et al (2013) Cochrane consumers and communication review group study quality guide. http://cccrg.cochrane.org/author-resources. Accessed 10 Dec 2023

  66. Miller PD, Hattersley G, Riis BJ et al (2016) Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316(7):722–733. https://doi.org/10.1001/jama.2016.11136

    Article  CAS  PubMed  Google Scholar 

  67. Bradburn MJ, Deeks JJ, Berlin JA, Russell Localio A (2007) Much ado about nothing: a comparison of the performance of meta-analytical methods with rare events. Stat Med 26:53–77. https://doi.org/10.1002/sim.2528

    Article  PubMed  Google Scholar 

  68. Richardson M, Garner P, Donegan S (2019) Interpretation of subgroup analyses in systematic reviews: a tutorial. Clin Epidemiol Global Health 7:192–198. https://doi.org/10.1016/j.cegh.2018.05.005

    Article  Google Scholar 

  69. Kravvariti E, Kasdagli MI, Diomatari KM et al (2023) Meta-analysis of placebo-arm dropouts in osteoporosis randomized-controlled trials and implications for nocebo-associated discontinuation of anti-osteoporotic drugs in clinical practice. Osteoporos Int 34(3):585–598. https://doi.org/10.1007/s00198-022-06658-7

    Article  PubMed  Google Scholar 

  70. Bone HG, Bolognese MA, Yuen CK et al (2008) Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab 93(6):2149–2157. https://doi.org/10.1210/jc.2007-2814

    Article  CAS  PubMed  Google Scholar 

  71. Bone HG, Bolognese MA, Yuen CK et al (2011) Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab 96(4):972–980. https://doi.org/10.1210/jc.2010-1502

    Article  CAS  PubMed  Google Scholar 

  72. Samelson EJ, Miller PD, Christiansen C et al (2014) RANKL inhibition with denosumab does not influence 3-year progression of aortic calcification or incidence of adverse cardiovascular events in postmenopausal women with osteoporosis and high cardiovascular risk. J Bone Miner Res 29(2):450–457. https://doi.org/10.1002/jbmr.2043

    Article  CAS  PubMed  Google Scholar 

  73. Cummings SR, San Martin J, McClung MR et al (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765. https://doi.org/10.1056/NEJMoa0809493

    Article  CAS  PubMed  Google Scholar 

  74. Bone HG, Wagman RB, Brandi ML et al (2017) 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol 5(7):513–523. https://doi.org/10.1016/S2213-8587(17)30138-9

    Article  CAS  PubMed  Google Scholar 

  75. Adami S, Libanati C, Boonen S et al (2012) Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial. J Bone Joint Surg Am 94(23):2113–2119. https://doi.org/10.2106/JBJS.K.00774

    Article  PubMed  Google Scholar 

  76. Boonen S, Adachi JD, Man Z et al (2011) Treatment with denosumab reduces the incidence of new vertebral and hip fractures in postmenopausal women at high risk. J Clin Endocrinol Metab 96(6):1727–1736. https://doi.org/10.1210/jc.2010-2784

    Article  CAS  PubMed  Google Scholar 

  77. Eastell R, Christiansen C, Grauer A et al (2011) Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res 26(3):530–537. https://doi.org/10.1002/jbmr.251

    Article  CAS  PubMed  Google Scholar 

  78. Koh JM, Chung DJ, Chung YS et al (2016) Assessment of denosumab in Korean postmenopausal women with osteoporosis: randomized, double-blind, placebo-controlled trial with open-label extension. Yonsei Med J 57(4):905–914. https://doi.org/10.3349/ymj.2016.57.4.905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nakamura T, Matsumoto T, Sugimoto T, Shiraki M (2012) Dose-response study of denosumab on bone mineral density and bone turnover markers in Japanese postmenopausal women with osteoporosis. Osteoporos Int 23(3):1131–1140. https://doi.org/10.1007/s00198-011-1786-8

    Article  CAS  PubMed  Google Scholar 

  80. Reid IR (2022) What is the risk of cardiovascular events in osteoporotic patients treated with romosozumab? Expert Opin Drug Saf 21(12):1441–1443. https://doi.org/10.1080/14740338.2022.2160445

    Article  CAS  PubMed  Google Scholar 

  81. Saag KG, Petersen J, Brandi ML et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377(15):1417–1427. https://doi.org/10.1056/NEJMoa1708322

    Article  CAS  PubMed  Google Scholar 

  82. Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543. https://doi.org/10.1056/NEJMoa1607948

    Article  CAS  PubMed  Google Scholar 

  83. Kranenburg G, Bartstra JW, Weijmans M et al (2016) Bisphosphonates for cardiovascular risk reduction: a systematic review and meta-analysis. Atherosclerosis 252:106–115. https://doi.org/10.1016/j.atherosclerosis.2016.06.039

    Article  CAS  PubMed  Google Scholar 

  84. Seeto AH, Tadrous M, Gebre AK et al (2023) Evidence for the cardiovascular effects of osteoporosis treatments in randomized trials of post-menopausal women: a systematic review and Bayesian network meta-analysis. Bone 167:116610. https://doi.org/10.1016/j.bone.2022.116610

    Article  CAS  PubMed  Google Scholar 

  85. Liu S, Tan Y, Huang W et al (2024) Cardiovascular safety of zoledronic acid in the treatment of primary osteoporosis: a meta-analysis and systematic review. Semin Arthritis Rheum 64:152304. https://doi.org/10.1016/j.semarthrit.2023.152304

    Article  CAS  PubMed  Google Scholar 

  86. Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822. https://doi.org/10.1056/NEJMoa067312

    Article  CAS  PubMed  Google Scholar 

  87. Cummings SR, Schwartz AV, Black DM (2007) Alendronate and atrial fibrillation. N Engl J Med 356:1895–1896. https://doi.org/10.1056/NEJMc076132

    Article  CAS  PubMed  Google Scholar 

  88. D’Silva KM, Cromer SJ, Yu EW, Fischer M, Kim SC (2021) Risk of incident atrial fibrillation with zoledronic acid versus denosumab: a propensity score-matched cohort study. J Bone Miner Res 36:52–60. https://doi.org/10.1002/jbmr.4174

    Article  CAS  PubMed  Google Scholar 

  89. Kim SY, Kim MJ, Cadarette SM, Solomon DH (2010) Bisphosphonates and risk of atrial fibrillation: a meta-analysis. Arthritis Res Ther 12:R30. https://doi.org/10.1186/ar2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ferbebouh M, Vallières F, Benderdour M, Fernandes J (2021) The pathophysiology of immunoporosis: innovative therapeutic targets. Inflamm Res 70(8):859–875. https://doi.org/10.1007/s00011-021-01484-9

    Article  CAS  PubMed  Google Scholar 

  91. Händel MN, Cardoso I, von Bülow C et al (2023) Fracture risk reduction and safety by osteoporosis treatment compared with placebo or active comparator in postmenopausal women: systematic review, network meta-analysis, and meta-regression analysis of randomised clinical trials. BMJ 381:e068033. https://doi.org/10.1136/bmj-2021-068033

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bhide A, Shah PS, Acharya G (2018) A simplified guide to randomized controlled trials. Acta Obstet Gynecol Scand 97(4):380–387. https://doi.org/10.1111/aogs.13309

    Article  PubMed  Google Scholar 

  93. Ezzalfani M, Porcher R, Savignoni A et al (2021) Addressing the issue of bias in observational studies: using instrumental variables and a quasi-randomization trial in an ESME research project. PLoS ONE 16(9):e0255017. https://doi.org/10.1371/journal.pone.0255017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Black DM, Geiger EJ, Eastell R et al (2020) Atypical femur fracture risk versus fragility fracture prevention with bisphosphonates. N Engl J Med 383:743–753. https://doi.org/10.1056/NEJMoa1916525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Anastasilakis AD, Polyzos SA, Makras P (2018) Therapy of endocrine disease: denosumab vs bisphosphonates for the treatment of postmenopausal osteoporosis. Eur J Endocrinol 179:R31-45. https://doi.org/10.1530/EJE-18-0056

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Takaomi Kobayashi, Tadatsugu Morimoto, Koji Ito, Masaaki Mawatari, and Takafumi Shimazaki were accountable and responsible for the conception and design of the study, acquisition of data, analysis, and interpretation of data, drafting the article or revising it critically for important intellectual content, and final approval of the version to be submitted.

Corresponding author

Correspondence to Takaomi Kobayashi.

Ethics declarations

Conflict of interest

Takaomi Kobayashi, Tadatsugu Morimoto, Koji Ito, Masaaki Mawatari, and Takafumi Shimazaki declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, T., Morimoto, T., Ito, K. et al. Denosumab vs. bisphosphonates in primary osteoporosis: a meta-analysis of comparative safety in randomized controlled trials. Osteoporos Int (2024). https://doi.org/10.1007/s00198-024-07118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00198-024-07118-0

Keywords

Navigation