Skip to main content
Log in

The relationship between bone strain index, bone mass, microarchitecture and mechanical behavior in human vertebrae: an ex vivo study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The aim of this study was to determine whether the Bone Strain Index (BSI), a recent DXA-based bone index, is related to bone mechanical behavior, microarchitecture and finally, to determine whether BSI improves the prediction of bone strength and the predictive role of BMD in clinical practice.

Purpose

Bone Strain Index (BSI) is a new DXA-based bone index that represents the finite element analysis of the bone deformation under load. The current study aimed to assess whether the BSI is associated with 3D microarchitecture and the mechanical behavior of human lumbar vertebrae.

Methods

Lumbar vertebrae (L3) were harvested fresh from 31 human donors. The anteroposterior BMC (g) and aBMD (g/cm2) of the vertebral body were measured using DXA, and then the BSI was automatically derived. The trabecular bone volume (Tb.BV/TV), trabecular thickness (Tb.Th), degree of anisotropy (DA), and structure model index (SMI) were measured using µCT with a 35-µm isotropic voxel size. Quasi-static uniaxial compressive testing was performed on L3 vertebral bodies under displacement control to assess failure load and stiffness.

Results

The BSI was significantly correlated with failure load and stiffness (r = -0.60 and -0.59; p < 0.0001), aBMD and BMC (r = -0.93 and -0.86; p < 0.0001); Tb.BV/TV and SMI (r = -0.58 and 0.51; p = 0.001 and 0.004 respectively). After adjustment for aBMD, the association between BSI and stiffness, BSI and SMI remained significant (r = -0.51; p = 0.004 and r = -0.39; p = 0.03 respectively, partial correlations) and the relation between BSI and failure load was close to significance (r = -0.35; p = 0.06).

Conclusion

The BSI was significantly correlated with the microarchitecture and mechanical behavior of L3 vertebrae, and these associations remained statistically significant regardless of aBMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. LeBoff MS, Greenspan SL, Insogna KL, Lewiecki EM, Saag KG, Singer AJ, Siris ES (2022) The clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 33(10):2049–2102. https://doi.org/10.1007/s00198-021-05900-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McDonnell P, McHugh PE, O’Mahoney D (2007) Vertebral osteoporosis and trabecular bone quality. Ann Biomed Eng 35(2):170–89. https://doi.org/10.1007/s10439-006-9239-9

    Article  CAS  PubMed  Google Scholar 

  3. Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE et al (2004) Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med 164(10):1108–1112. https://doi.org/10.1001/archinte.164.10.1108

    Article  PubMed  Google Scholar 

  4. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18(8):1033–1046. https://doi.org/10.1007/s00198-007-0343-y

    Article  CAS  PubMed  Google Scholar 

  5. Chapurlat R, Bui M, Sornay-Rendu E, Zebaze R, Delmas PD, Liew D, Lespessailles E, Seeman E (2020) Deterioration of Cortical and Trabecular Microstructure Identifies Women with Osteopenia or Normal Bone Mineral Density at Imminent and Long-Term Risk for Fragility Fracture: A Prospective Study. J Bone Miner Res 35(5):833–844. https://doi.org/10.1002/jbmr.3924

    Article  CAS  PubMed  Google Scholar 

  6. Chavassieux P, Chapurlat R (2022) Interest of Bone Histomorphometry in Bone Pathophysiology Investigation: Foundation, Present, and Future. Front Endocrinol (Lausanne) 13:907914. https://doi.org/10.3389/fendo.2022.907914

    Article  PubMed  Google Scholar 

  7. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–15. https://doi.org/10.1210/jc.2005-1258

    Article  CAS  PubMed  Google Scholar 

  8. Vilayphiou N, Boutroy S, Szulc P, van Rietbergen B, Munoz F, Delmas PD, Chapurlat R (2011) Finite element analysis performed on radius and tibia HR-pQCT images and fragility fractures at all sites in men. J Bone Miner Res 26(5):965–73. https://doi.org/10.1002/jbmr.297

    Article  PubMed  Google Scholar 

  9. Gazzotti S, Aparisi Gómez MP, Schileo E, Taddei F, Sangiorgi L, Fusaro M, Miceli M, Guglielmi G, Bazzocchi A (2023) High-resolution peripheral quantitative computed tomography: research or clinical practice? Br J Radiol 96(1150):20221016. https://doi.org/10.1259/bjr.20221016

    Article  PubMed  PubMed Central  Google Scholar 

  10. Messina C, Maffi G, Vitale JA, Ulivieri FM, Guglielmi G, Sconfienza LM (2018) Diagnostic imaging of osteoporosis and sarcopenia: a narrative review. Quant Imaging Med Surg 8(1):86–99. https://doi.org/10.21037/qims.2018.01.01

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R (2013) The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int 24(9):2455–2460. https://doi.org/10.1007/s00198-013-2316-7

    Article  CAS  PubMed  Google Scholar 

  12. Ulivieri FM, Rinaudo L (2022) The bone strain index: An innovative dual x-ray absorptiometry bone strength index and its helpfulness in clinical medicine. J Clin Med 11(9):2284. https://doi.org/10.3390/jcm11092284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36(7):897–904. https://doi.org/10.1016/s0021-9290(03)00071-x

    Article  PubMed  Google Scholar 

  14. Ulivieri FM, Rinaudo L (2021) Beyond bone mineral density: A new dual x-ray absorptiometry index of bone strength to predict fragility fractures, the bone strain index. Front Med 15(7):590139. https://doi.org/10.3389/fmed.2020.590139

    Article  Google Scholar 

  15. Ulivieri FM, Rebagliati GAA, Piodi LP, Solimeno LP, Pasta G, Boccalandro E et al (2018) Usefulness of bone microarchitectural and geometric DXA-derived parameters in haemophilic patients. Haemophilia. 24(6):980–987. https://doi.org/10.1111/hae.13611

    Article  CAS  PubMed  Google Scholar 

  16. Rodari G, Scuvera G, Ulivieri FM, Profka E, Menni F, Saletti V et al (2018) Progressive bone impairment with age and pubertal development in neurofibromatosis type I. Arch Osteoporos 13(1):93. https://doi.org/10.1007/s11657-018-0507-8

    Article  PubMed  Google Scholar 

  17. Ulivieri FM, Rinaudo L, Piodi LP, Barbieri V, Marotta G, Scium’e M et al (2020) Usefulness of dual X-ray absorptiometry-derived bone geometry and structural indexes in mastocytosis. Calcif Tissue Int 107(6):551–558. https://doi.org/10.1007/s00223-020-00749-5

    Article  CAS  PubMed  Google Scholar 

  18. Ulivieri FM, Piodi LP, Rinaudo L, Scanagatta P, Cesana BM (2021) Bone strain index in the prediction of vertebral fragility refracture. Eur Radiol Exp 4(1):23. https://doi.org/10.1186/s41747-020-00151-8

    Article  Google Scholar 

  19. Messina C, Rinaudo L, Cesana BM, Maresca D, Piodi LP, Sconfienza LM et al (2021) Prediction of osteoporotic fragility re-fracture with lumbar spine DXA-based derived bone strain index: a multicenter validation study. Osteoporos Int 32(1):85–91. https://doi.org/10.1007/s00198-020-05620-9

    Article  CAS  PubMed  Google Scholar 

  20. Ulivieri FM, Piodi LP, Rinaudo L, Scanagatta P, Cesana BM (2020) Bone strain index in the prediction of vertebral fragility refracture. Eur Radiol Exp 4(1):23. https://doi.org/10.1186/s41747-020-00151-8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ulivieri FM, Rinaudo L, Piodi LP, Messina C, Sconfienza LM, Sardanelli F et al (2021) Bone strain index as a predictor of further vertebral fracture in osteoporotic women: an artificial intelligence-based analysis. PLoS One 16(2):e0245967. https://doi.org/10.1371/journal.pone.0245967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sornay-Rendu E, Duboeuf F, Ulivieri FM, Rinaudo L, Chapurlat R (2022) The bone strain index predicts fragility fractures. The OFELY study Bone 157:116348. https://doi.org/10.1016/j.bone.2022.116348

    Article  PubMed  Google Scholar 

  23. Roux JP, Wegrzyn J, Arlot ME, Guyen O, Delmas PD, Chapurlat R, Bouxsein ML (2010) Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae. An ex-vivo study. J Bone Miner Res 25:356–361. https://doi.org/10.1359/jbmr.090803

    Article  PubMed  Google Scholar 

  24. Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R (2013) The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int 24:2455–2460. https://doi.org/10.1007/s00198-013-2316-7

    Article  CAS  PubMed  Google Scholar 

  25. Martin RB, Sharkey NA (2001) Mechanical effects of post-mortem changes, preservation, and allograft bone treatments. In: Cowin SC (ed.) Bone Mechanics Handbook, 2nd ed., CRC Press, Boca Raton FL, USA, 20.1–20.24

  26. Ashman RB, Donofrio M, Cowin SC, van Buskirk WC (1982) Postmortem changes in the elastic properties of trabecular bone. Trans Orthop Res Soc 7:63–67

    Google Scholar 

  27. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–86. https://doi.org/10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  28. Hildebrand T, Rüegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1(1):15–23. https://doi.org/10.1080/01495739708936692

    Article  PubMed  Google Scholar 

  29. Buccino F, Colombo C, Duarte DHL, Rinaudo L, Ulivieri FM, Vergani LM (2021) 2D and 3D numerical models to evaluate trabecular bone damage. Med Biol Eng Comput 59(10):2139–2152. https://doi.org/10.1007/s11517-021-02422-x

    Article  PubMed  PubMed Central  Google Scholar 

  30. Colombo C, Libonati F, Rinaudo L, Bellazzi M, Ulivieri FM, Vergani L (2019) A new finite element based parameter to predict bone fracture. PLoS One. 14(12):e0225905. https://doi.org/10.1371/journal.pone.0225905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wegrzyn J, Roux JP, Arlot ME, Boutroy S, Vilayphiou N, Guyen O, Delmas PD, Chapurlat R, Bouxsein M (2010) Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex vivo human L3 vertebrae. J Bone Miner Res 25(11):2324–31. https://doi.org/10.1002/jbmr.164

    Article  PubMed  PubMed Central  Google Scholar 

  32. Roux JP, Belghali S, Wegrzyn J, Rendu ES, Chapurlat R (2016) Vertebral body morphology is associated with incident lumbar vertebral fracture in postmenopausal women. The OFELY study. Osteoporos Int 27(8):2507–13. https://doi.org/10.1007/s00198-016-3558-y

    Article  CAS  PubMed  Google Scholar 

  33. Roux JP, Boutroy S, Bouxsein ML, Chapurlat R, Wegrzyn J (2020) Local and global microarchitecture is associated with different features of bone biomechanics. Bone Rep 13:100716. https://doi.org/10.1016/j.bonr.2020.100716

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maquer G, Lu Y, Dall’Ara E, Chevalier Y, Krause M, Yang L, Eastell R, Lippuner K, Zysset KP (2016) The initial slope of the variogram, foundation of the trabecular bone score, is not or is poorly associated with vertebral strength. J Bone Miner Res 31(2):341–6. https://doi.org/10.1002/jbmr.2610

    Article  PubMed  Google Scholar 

  35. Jackman TM, Hussein AI, Curtiss C, Fein PM, Camp A, De Barros L, Morgan EF (2016) Quantitative, 3D Visualization of the Initiation and Progression of Vertebral Fractures Under Compression and Anterior Flexion. J Bone Miner Res 31(4):777–88. https://doi.org/10.1002/jbmr.2749

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Roux.

Ethics declarations

Conflict of interest

JP Roux, F. Duboeuf, E. Sornay-Rendu, J. Wegrzyn and R. Chapurlat declare they have no conflict of interest. Luca Rinaudo is Technical manager in Tecnologie Avanzate TA s.r.l. Bone Strain Index Project and Fabio Massimo Ulivieri is Scientific coordinator in Tecnologie Avanzate TA s.r.l. Bone Strain Index Project.

Disclosures

J.P. Roux: Research grant paid to the research institution UCB. R. Chapurlat: research grants UCB and Amgen, consulting UCB, Amgen, Mereo, Amolyt. F. Duboeuf, E. Sornay-Rendu, L. Rinaudo, F.M. Ulivieri and J. Wegrzyn declare they have no disclosure.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roux, JP., Duboeuf, F., Sornay-Rendu, E. et al. The relationship between bone strain index, bone mass, microarchitecture and mechanical behavior in human vertebrae: an ex vivo study. Osteoporos Int (2024). https://doi.org/10.1007/s00198-024-07066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00198-024-07066-9

Keywords

Navigation