Skip to main content

Advertisement

Log in

Damaged bone microarchitecture by Trabecular Bone Score (TBS) and low appendicular muscle mass: main risk factors for vertebral and non-vertebral fractures in women with long-standing rheumatoid arthritis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We ascertained the fracture risk factors stratified by vertebral and non-vertebral sites in rheumatoid arthritis (RA) females. Bone/muscle features, but not disease activity, were the main markers for fractures in this long-standing RA population: low trabecular bone score (TBS) for vertebral fracture and decreased appendicular muscle mass for non-vertebral fracture.

Purpose

To assess risk factors for fractures, including clinical, laboratory and dual energy X-ray absorptiometry (DXA) parameters (bone mass, trabecular bone score—TBS, muscle mass) in women with established rheumatoid arthritis (RA).

Methods

Three hundred females with RA (ACR, 2010) were studied. Clinical data were obtained by questionnaire and disease activity by composite indices (DAS28, CDAI, SDAI), C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). Bone mineral density (BMD), TBS, body composition and Vertebral Fracture Assessment (VFA) were performed by DXA. Logistic regression models were constructed to identify factors independently associated with vertebral (VF) and non-vertebral fractures (NVF), separately.

Results

Through rigorous eligibility criteria, a total of 265 women were yielded for final data analysis (median age, 55 [22–86] years; mean disease duration, 16.2 years). Prevalence of VF and NVF were 30.6% and 17.4%, respectively. In multivariate analyzes, TBS (OR = 1.6, 95%CI = 1.09–2.36, p = 0.017), CRP (OR = 1.54, 95%CI = 1.15–2.08, p = 0.004), and parathormone (OR = 1.24, 95%CI = 1.05–1.45, p = 0.009) were risk factors for VF, whereas low appendicular muscle mass (OR = 2.71; 95%CI = 1.01–7,28; p = 0.048), body mass index (BMI) (OR = 0.90, 95%CI = 0.82–0.99; p = 0.025), ESR (OR = 1.18, 95%CI = 1.01–1,38, p = 0,038) and hip BMD (OR = 1.82, 95%CI = 1.10–3.03, p = 0.02) were associated with NVF.

Conclusion

In women with long-term RA, markers of fractures differed between distinct skeletal sites (vertebral and non-vertebral). The magnitude of association of bone/muscle parameters with fracture (TBS for VF and appendicular muscle mass for NVF) was greater than that of the association between RA activity and fracture. TBS seems to have greater discriminative power than BMD to identify subjects with VF in long-standing RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Alarcón GS (1995) Epidemiology of rheumatoid arthritis. Rheum Dis Clin North Am 21:589–604

    Article  PubMed  Google Scholar 

  2. Conforti A, Cola ID, Pavlych V et al (2021) Beyond the joints, the extra-articular manifestations in rheumatoid arthritis. Autoimmun Rev 20:102735. https://doi.org/10.1016/j.autrev.2020.102735

    Article  PubMed  Google Scholar 

  3. Fardellone P, Salawati E, Monnier LL, Goëb V (2020) Bone loss, osteoporosis, and fractures in patients with rheumatoid arthritis: a review. J Clin Med 9:3361. https://doi.org/10.3390/jcm9103361

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xue AL, Wu SY, Jiang L, Feng AM, Guo HF, Zhao P (2017) Bone fracture risk in patients with rheumatoid arthritis: a meta-analysis. Medicine (Baltimore) 96:e6983. https://doi.org/10.1097/md.0000000000006983

    Article  PubMed  Google Scholar 

  5. Silva BC, Leslie WD, Resch H et al (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530. https://doi.org/10.1002/jbmr.2176

    Article  PubMed  Google Scholar 

  6. McCloskey EV, Odén A, Harvey NC et al (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31:940–948. https://doi.org/10.1002/jbmr.2734

    Article  PubMed  Google Scholar 

  7. Choi YJ, Ock SY, Chung YS (2016) Trabecular bone score (TBS) and TBS-adjusted fracture risk assessment tool are potential supplementary tools for the discrimination of morphometric vertebral fractures in postmenopausal women with type 2 diabetes. J Clin Densitom 19:507–514. https://doi.org/10.1016/j.jocd.2016.04.001

    Article  PubMed  Google Scholar 

  8. Dos Santos LM, Ohe MN, Pallone SG et al (2021) Trabecular bone score (TBS) in primary hyperparathyroidism (PHPT): a useful tool? J Clin Densitom 24:563–570. https://doi.org/10.1016/j.jocd.2021.04.001

    Article  PubMed  Google Scholar 

  9. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  10. Radkowski MJ, Slawinski P, Targowski T (2020) Osteosarcopenia in rheumatoid arthritis treated with glucocorticosteroids – essence, significance, consequences. Reumatologia 58:101–106. https://doi.org/10.5114/reum.2020.95363

    Article  PubMed  PubMed Central  Google Scholar 

  11. Aletaha D, Neogi T, Silman AJ et al (2010) 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62:2569–2581. https://doi.org/10.1002/art.27584

    Article  PubMed  Google Scholar 

  12. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  13. O’Neill TW, Cooper C, Cannata JB et al (1994) Reproducibility of a questionnaire on risk factors for osteoporosis in a multicentre prevalence survey: the European Vertebral Osteoporosis Study. Int J Epidemiol 23:559–565. https://doi.org/10.1093/ije/23.3.559

    Article  CAS  PubMed  Google Scholar 

  14. O’Neills TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res 11:1010–1018. https://doi.org/10.1002/jbmr.5650110719

    Article  Google Scholar 

  15. Hagstromer M, Oja P, Sjostrom M (2006) The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr 9:755–762. https://doi.org/10.1079/phn2005898

    Article  PubMed  Google Scholar 

  16. Craig CL, Marshall AL, Sjöström M et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–95. https://doi.org/10.1249/01.mss.0000078924.61453.fb

    Article  PubMed  Google Scholar 

  17. Fries JF, Spitz P, Kraines RG, Holman HR (1980) Measurement of patient outcome in arthritis. Arthritis Rheum 23:137–145. https://doi.org/10.1002/art.1780230202

    Article  CAS  PubMed  Google Scholar 

  18. Ferraz MB, Oliveira LM, Araujo PM et al (1990) Crosscultural reliability of the physical ability dimension of the health assessment questionnaire. J Rheumatol 17:813–817

    CAS  PubMed  Google Scholar 

  19. Baim S, Binkley N, Bilezikian JP et al (2008) Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD Position Development Conference. J Clin Densitom 11:75–91. https://doi.org/10.1016/j.jocd.2007.12.007

    Article  PubMed  Google Scholar 

  20. Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558. https://doi.org/10.1093/gerona/glu010

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397. https://doi.org/10.1007/s00198-007-0543-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCloskey EV, Odén A, Harvey NC et al (2015) Adjusting fracture probability by trabecular bone score. Calcif Tissue Int 96:500–509. https://doi.org/10.1007/s00223-015-9980-x

    Article  CAS  PubMed  Google Scholar 

  23. Gregson CL, Armstrong DJ, Bowden J et al (2022) UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 17:58. https://doi.org/10.1007/s11657-022-01061-5

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kanis JA, Johansson H, Oden A, McCloskey EV (2011) Guidance for the adjustment of FRAX according to the dose of glucocorticoids. Osteoporos Int 22:809–816. https://doi.org/10.1007/s00198-010-1524-7

    Article  CAS  PubMed  Google Scholar 

  25. Genant HK, Wu CY, van Kujik C, Nevitt MC (1993) Vertebral fracture assessement using a semiquantitaive technique. J Bone Miner Res 8:1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  CAS  PubMed  Google Scholar 

  26. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res 7:221–227. https://doi.org/10.1002/jbmr.5650070214

    Article  CAS  PubMed  Google Scholar 

  27. Schousboe JT, Shepherd JA, Bilezikian JP, Baim S (2013) Executive summary of the 2013 International Society for Clinical Densitometry Position Development Conference on bone densitometry. J Clin Densitom 16:455–66. https://doi.org/10.1016/j.jocd.2013.08.004

    Article  PubMed  Google Scholar 

  28. Liu Y, Jiang J, Mo M, Sun X, Yu K (2022) Incidence and risk factors for vertebral fracture in rheumatoid arthritis: an update meta-analysis. Clin Rheumatol 41:1313–1322. https://doi.org/10.1007/s10067-021-06046-2

    Article  PubMed  Google Scholar 

  29. Mohammad A, Lohan D, Bergin D et al (2014) The prevalence of vertebral fracture on vertebral fracture assessment imaging in a large cohort of patients with rheumatoid arthritis. Rheumatology (Oxford) 53:821–827. https://doi.org/10.1093/rheumatology/ket353

    Article  PubMed  Google Scholar 

  30. Bréban S, Briot K, Kolta S et al (2012) Identification of rheumatoid arthritis patients with vertebral fractures using bone mineral density and trabecular bone score. J Clin Densitom 15:260–266. https://doi.org/10.1016/j.jocd.2012.01.007

    Article  PubMed  Google Scholar 

  31. Kim D, Cho SK, Kim JY, Choi YY, Sung YK (2016) Association between trabecular bone score and risk factor for fractures in Korean female patients with rheumatoid arthritis. Mod Rheumatol 26:540–545. https://doi.org/10.3109/14397595.2015.1101212

    Article  CAS  PubMed  Google Scholar 

  32. Choi YJ, Chung YS, Suh CH, Jung JY, Kim HA (2017) Trabecular bone score as a supplementary tool for the discrimination of osteoporotic fractures in postmenopausal women with rheumatoid arthritis. Medicine (Baltimore) 96:e8661. https://doi.org/10.1097/md.0000000000008661

    Article  PubMed  Google Scholar 

  33. Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S (2013) Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int 24:991–998. https://doi.org/10.1007/s00198-012-2008-8

    Article  PubMed  Google Scholar 

  34. Li TH, Chang YS, Liu CW et al (2021) The prevalence and risk factors of sarcopenia in rheumatoid arthritis patients: a systematic review and meta-regression analysis. Semin Arthritis Rheum 51:236–245. https://doi.org/10.1016/j.semarthrit.2020.10.002

    Article  PubMed  Google Scholar 

  35. Carvalho GD, Bonfiglioli K, Caparbo VF, Takayama L, Pereira RMR, Domiciano DS (2020) Changes to body composition in women with long-standing established rheumatoid arthritis: differences by level of disease activity. J Clin Densitom 23:639–646. https://doi.org/10.1016/j.jocd.2019.06.002

    Article  PubMed  Google Scholar 

  36. Brance ML, Di Gregorio S, Pons-Estel BA et al (2021) Prevalence of sarcopenia and whole-body composition in rheumatoid arthritis. J Clin Rheumatol 27:S153–S160. https://doi.org/10.1097/rhu.0000000000001549

    Article  PubMed  Google Scholar 

  37. Chen YF, Zong HX, Xu SQ et al (2021) Synergistic effect of sarcopenia and poor balance on osteoporotic vertebral fracture in Chinese patients with rheumatoid arthritis. Clin Rheumatol 40:3627–3637. https://doi.org/10.1007/s10067-021-05703-w

    Article  PubMed  Google Scholar 

  38. Zhang M, Xu S, Zong H et al (2022) Effect of sarcopenia and poor balance on vertebral spinal osteoporotic fracture in female rheumatoid arthritis. Sci Rep 12:9477. https://doi.org/10.1038/s41598-022-13339-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bow CH, Cheung E, Cheung CL et al (2012) Ethnic difference of clinical vertebral fracture risk. Osteoporosis Int 23:879–885. https://doi.org/10.1007/s00198-011-1627-9

    Article  CAS  Google Scholar 

  40. Lee YK, Jang S, Jang S et al (2012) Mortality after vertebral fracture in Korea: analysis of the National Claim Registry. Osteoporosis Int 23:1859–1865. https://doi.org/10.1007/s00198-011-1833-5

    Article  Google Scholar 

  41. Furuya T, Kotake S, Inoue E et al (2007) Risk factors associated with incident clinical vertebral and nonvertebral fractures in Japanese women with rheumatoid arthritis: a prospective 54-month observational study. J Rheumatol 34:303–310

    PubMed  Google Scholar 

  42. El Maghraoui A, Rezqi A, Mounach A, Achemlal L, Bezza A, Ghozlani I (2010) Prevalence and risk factors of vertebral fractures in women with rheumatoid arthritis using vertebral fracture assessment. Rheumatology (Oxford) 49:1303–1310. https://doi.org/10.1093/rheumatology/keq084

    Article  PubMed  Google Scholar 

  43. Tong JJ, Xu SQ, Zong HX, Pan MJ, Teng YZ, Xu JH (2020) Prevalence and risk factors associated with vertebral osteoporotic fractures in patients with rheumatoid arthritis. Clin Rheumatol 39:357–364. https://doi.org/10.1007/s10067-019-04787-9

    Article  PubMed  Google Scholar 

  44. Abtahi S, Driessen JHM, Burden AM et al (2022) Low-dose oral glucocorticoid therapy and risk of osteoporotic fractures in patients with rheumatoid arthritis: a cohort study using the clinical practice research datalink. Rheumatology (Oxford) 61:1448–1458. https://doi.org/10.1093/rheumatology/keab548

    Article  CAS  PubMed  Google Scholar 

  45. Leslie WD, Hans D, Silva BC (2023) Fracture prediction from trabecular bone score is unaffected by anti-resorptive treatment: a registry-based cohort study. J Clin Densitom 26:10–15. https://doi.org/10.1016/j.jocd.2023.01.001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diogo S. Domiciano.

Ethics declarations

Ethics approval

This study was approved by the Local Ethics in Research Committee of the São Paulo University School of Medicine (CAPPesq: 51178115.1.0000.0068).

Consent to participate/publication

All participants gave written informed consent.

Conflicts of interest

FFS, GRM, ACMR, AYS, CPF, LMTG, VFC, RMRP have nothing to declare. KRB has received a speaker honorarium from Abbvie, Pfizer and Novartis. DSD has received a speaker honorarium from Amgen and Janssen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In memorian of Rosa M. R. Pereira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, F.F., Machado, G.R., Ribeiro, A.C.M. et al. Damaged bone microarchitecture by Trabecular Bone Score (TBS) and low appendicular muscle mass: main risk factors for vertebral and non-vertebral fractures in women with long-standing rheumatoid arthritis. Osteoporos Int 35, 819–830 (2024). https://doi.org/10.1007/s00198-024-07026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-024-07026-3

Keywords

Navigation