Skip to main content

Advertisement

Log in

The skeletal safety of milk-derived proteins: A meta-analysis of randomized controlled trials

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Purpose

There has been a persistent claim that dairy products contain calcium-leaching proteins, although the soundness of such a claim has been challenged. A meta-analysis of randomized controlled trials (RCTs) on the effects of milk-derived protein supplementation on bone health indices in adults was performed to reconcile the controversy surrounding the potential skeletal safety concerns of proteins of dairy origin.

Methods

The PubMed and Web of Science databases were searched for relevant RCTs. A random-effects model was used to generate pooled effect sizes and 95% confidence intervals.

Results

Milk-derived protein supplementation did not significantly affect whole-body BMD (n = 7 RCTs) and BMD at the lumbar spine (n = 10), hip (n = 8), femoral neck (n = 9), trochanter (n = 5), intertrochanter (n = 2), and ultradistal radius (n = 2). The concentrations of bone formation markers (bone-specific alkaline phosphatase [n = 11], osteocalcin [n = 6], procollagen type 1 amino-terminal propeptide [n = 5]), bone resorption markers (N-terminal telopeptide of type 1 collagen [n = 7], C-terminal telopeptide of type 1 collagen [n = 7], deoxypyridinoline [n = 4]), and parathyroid hormone (n = 7) were not significantly affected. However, increased insulin-like growth factor-1 (IGF-1) concentrations (n = 13) were observed. Reduced IGF-1 concentrations were observed when soy protein was used as a comparator, and increased IGF-1 concentrations were observed when carbohydrate was used.

Conclusion

Our findings do not support the claim that proteins of dairy origin are detrimental to bone health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are available upon request.

References  

  1. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O’Karma M, Wallace TC, Zemel BS (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27:1281–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rizzoli R (2014) Dairy products, yogurts, and bone health. Am J Clin Nutr 99:1256S-1262S

    Article  CAS  PubMed  Google Scholar 

  3. Shkembi B, Huppertz T (2021) Calcium Absorption from Food Products: Food Matrix Effects. Nutrients 14:180

    Article  PubMed  PubMed Central  Google Scholar 

  4. Comerford KB, Miller GD, Boileau AC, MasielloSchuette SN, Giddens JC, Brown KA (2021) Global Review of Dairy Recommendations in Food-Based Dietary Guidelines. Front Nutr 8:671999

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wallace TC, Bailey RL, Lappe J, O’Brien KO, Wang DD, Sahni S, Weaver CM (2021) Dairy intake and bone health across the lifespan: a systematic review and expert narrative. Crit Rev Food Sci Nutr 61:3661–3707

    Article  CAS  PubMed  Google Scholar 

  6. Gaucheron F (2011) Milk and dairy products: a unique micronutrient combination. J Am Coll Nutr 30:400S-409S

    Article  CAS  PubMed  Google Scholar 

  7. Heaney RP (2009) Dairy and bone health. J Am Coll 28:82S-90S

    Article  CAS  Google Scholar 

  8. Rizzoli R, Biver E, Brennan-Speranza TC (2021) Nutritional intake and bone health. Lancet Diabetes Endocrinol 9:606–621

    Article  CAS  PubMed  Google Scholar 

  9. Dolan E, Sale C (2019) Protein and bone health across the lifespan. Proc Nutr Soc 78:45–55

    Article  CAS  PubMed  Google Scholar 

  10. Fenton TR, Lyon AW (2011) Milk and acid-base balance: proposed hypothesis versus scientific evidence. J Am Coll Nutr 30:471S-475S

    Article  CAS  PubMed  Google Scholar 

  11. Lanou AJ (2009) Should dairy be recommended as part of a healthy vegetarian diet? Counterpoint. Am J Clin Nutr 89:1638S-1642S

    Article  CAS  PubMed  Google Scholar 

  12. Kerstetter JE, Kenny AM, Insogna KL (2011) Dietary protein and skeletal health: a review of recent human research. Curr Opin Lipidol 22(1):16–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hidayat K, Chen JS, Wang TC, Liu YJ, Shi YJ, Su HW, Liu B, Qin LQ (2022) The Effects of Milk Supplementation on Bone Health Indices in Adults: A Meta-analysis of Randomized Controlled Trials. Adv Nutr 13:1186–1199

    Article  PubMed  Google Scholar 

  14. Hidayat K, Du X, Shi BM, Qin LQ (2020) Systematic review and meta-analysis of the association between dairy consumption and the risk of hip fracture: critical interpretation of the currently available evidence. Osteoporos Int 31:1411–1425

    Article  CAS  PubMed  Google Scholar 

  15. Physicians Committee for Responsible Medicine. Calcium and Strong Bones. https://www.pcrm.org/good-nutrition/nutrition-information/health-concerns-about-dairy/calcium-and-strong-bones

  16. Forks Over Knives (2019) 7 Ways Animal Protein is Damaging Your Health. https://www.forksoverknives.com/wellness/animalproteindangers/

  17. Plant Based News (2021) Largest Comprehensive Study Of Nutrition Links Dairy And Disease. https://plantbasednews.org/your-health/faqs-and-mythbusting/largest-study-links-dairy-disease/

  18. Viva (2022) Why You Don't Need Dairy. https://cdn.viva.org.uk/wp-content/uploads/2020/02/WYDND-guide-2022.pdf

  19. PETA (2023) Dairy Leaches Calcium From Your Bones—Eat These Foods Instead. https://prime.peta.org/news/dairy-leaches-calcium-from-your-bones/

  20. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW Jr (1998) Soy protein and isoflavones: their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68:1375S-1379S

    Article  CAS  PubMed  Google Scholar 

  21. Alekel DL, Germain AS, Peterson CT, Hanson KB, Stewart JW, Toda T (2000) Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 72:844–852

    Article  CAS  PubMed  Google Scholar 

  22. Knight DC, Howes JB, Eden JA, Howes LG (2001) Effects on menopausal symptoms and acceptability of isoflavone-containing soy powder dietary supplementation. Climacteric 4:13–18

    Article  CAS  PubMed  Google Scholar 

  23. Khalil DA, Lucas EA, Juma S, Smith BJ, Payton ME, Arjmandi BH (2002) Soy protein supplementation increases serum insulin-like growth factor-I in young and old men but does not affect markers of bone metabolism. J Nutr 132:2605–2608

    Article  CAS  PubMed  Google Scholar 

  24. Arjmandi BH, Khalil DA, Smith BJ, Lucas EA, Juma S, Payton ME, Wild RA (2003) Soy protein has a greater effect on bone in postmenopausal women not on hormone replacement therapy, as evidenced by reducing bone resorption and urinary calcium excretion. J Clin Endocrinol Metab 88:1048–1054

    Article  CAS  PubMed  Google Scholar 

  25. Dalais FS, Ebeling PR, Kotsopoulos D, McGrath BP, Teede HJ (2003) The effects of soy protein containing isoflavones on lipids and indices of bone resorption in postmenopausal women. Clin Endocrinol (Oxf) 58:704–709

    Article  CAS  PubMed  Google Scholar 

  26. Murray MJ, Meyer WR, Lessey BA, Oi RH, DeWire RE, Fritz MA (2003) Soy protein isolate with isoflavones does not prevent estradiol-induced endometrial hyperplasia in postmenopausal women: a pilot trial. Menopause 10:456–464

    Article  PubMed  Google Scholar 

  27. Arjmandi BH, Khalil DA, Lucas EA, Smith BJ, Sinichi N, Hodges SB, Juma S, Munson ME, Payton ME, Tivis RD, Svanborg A (2004) Soy protein may alleviate osteoarthritis symptoms. Phytomedicine 11:567–575

    Article  CAS  PubMed  Google Scholar 

  28. Kreijkamp-Kaspers S, Kok L, Grobbee DE, de Haan EH, Aleman A, Lampe JW, van der Schouw YT (2004) Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: a randomized controlled trial. JAMA 292:65–74

    Article  CAS  PubMed  Google Scholar 

  29. Ballard TL, Clapper JA, Specker BL, Binkley TL, Vukovich MD (2005) Effect of protein supplementation during a 6-mo strength and conditioning program on insulin-like growth factor I and markers of bone turnover in young adults. Am J Clin Nutr 81:1442–1448

    Article  CAS  PubMed  Google Scholar 

  30. Spence LA, Lipscomb ER, Cadogan J, Martin B, Wastney ME, Peacock M, Weaver CM (2005) The effect of soy protein and soy isoflavones on calcium metabolism in postmenopausal women: a randomized cross-over study. Am J Clin Nutr 81:916–922

    Article  CAS  PubMed  Google Scholar 

  31. Evans EM, Racette SB, Van Pelt RE, Peterson LR, Villareal DT (2007) Effects of soy protein isolate and moderate exercise on bone turnover and bone mineral density in postmenopausal women. Menopause 14:481–488

    Article  PubMed  PubMed Central  Google Scholar 

  32. Holm L, Olesen JL, Matsumoto K, Doi T, Mizuno M, Alsted TJ, Mackey AL, Schwarz P, Kjaer M (2008) Protein-containing nutrient supplementation following strength training enhances the effect on muscle mass, strength, and bone formation in postmenopausal women. J Appl Physiol 105:274–281

    Article  CAS  PubMed  Google Scholar 

  33. Kenny AM, Mangano KM, Abourizk RH, Bruno RS, Anamani DE, Kleppinger A, Walsh SJ, Prestwood KM, Kerstetter JE (2009) Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial. Am J Clin Nutr 90:234–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rodondi A, Ammann P, Ghilardi-Beuret S, Rizzoli R (2009) Zinc increases the effects of essential amino acids-whey protein supplements in frail elderly. J Nutr Health Aging 13(6):491–497

    Article  CAS  PubMed  Google Scholar 

  35. Vupadhyayula PM, Gallagher JC, Templin T, Logsdon SM, Smith LM (2009) Effects of soy protein isolate on bone mineral density and physical performance indices in postmenopausal women–a 2-year randomized, double-blind, placebo-controlled trial. Menopause 16:320–328

    Article  PubMed  Google Scholar 

  36. Sukumar D, Ambia-Sobhan H, Zurfluh R, Schlussel Y, Stahl TJ, Gordon CL, Shapses SA (2011) Areal and volumetric bone mineral density and geometry at two levels of protein intake during caloric restriction: a randomized, controlled trial. J Bone Miner Res 26:1339–1348

    Article  CAS  PubMed  Google Scholar 

  37. Zhu K, Meng X, Kerr DA, Devine A, Solah V, Binns CW, Prince RL (2011) The effects of a two-year randomized, controlled trial of whey protein supplementation on bone structure, IGF-1, and urinary calcium excretion in older postmenopausal women. J Bone Miner Res 26:2298–2306

    Article  CAS  PubMed  Google Scholar 

  38. Kerstetter JE, Bihuniak JD, Brindisi J, Sullivan RR, Mangano KM, Larocque S, Kotler BM, Simpson CA, Cusano AM, Gaffney-Stomberg E, Kleppinger A, Reynolds J, Dziura J, Kenny AM, Insogna KL (2015) The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults. J Clin Endocrinol Metab 100:2214–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rondanelli M, Klersy C, Terracol G, Talluri J, Maugeri R, Guido D, Faliva MA, Solerte BS, Fioravanti M, Lukaski H, Perna S (2016) Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr 103:830–840

    Article  CAS  PubMed  Google Scholar 

  40. Wright CS, McMorrow AM, Weinheimer-Haus EM, Campbell WW (2017) Whey Protein Supplementation and Higher Total Protein Intake Do Not Influence Bone Quantity in Overweight and Obese Adults Following a 36-Week Exercise and Diet Intervention. J Nutr 147:179–186

    Article  CAS  PubMed  Google Scholar 

  41. Bo Y, Liu C, Ji Z, Yang R, An Q, Zhang X, You J, Duan D, Sun Y, Zhu Y, Cui H, Lu Q (2019) A high whey protein, vitamin D and E supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: A double-blind randomized controlled trial. Clin Nutr 38:159–164

    Article  CAS  PubMed  Google Scholar 

  42. Hill TR, Verlaan S, Biesheuvel E, Eastell R, Bauer JM, Bautmans I, Brandt K, Donini LM, Maggio M, Mets T, Seal CJ, Wijers SL, Sieber C, Cederholm T, Aspray TJ, PROVIDE Consortium (2019) A Vitamin D, Calcium and Leucine-Enriched Whey Protein Nutritional Supplement Improves Measures of Bone Health in Sarcopenic Non-Malnourished Older Adults: The PROVIDE Study. Calcif Tissue Int 105:383–391

    Article  CAS  PubMed  Google Scholar 

  43. George KS, Muñoz J, Akhavan NS, Foley EM, Siebert SC, Tenenbaum G, Khalil DA, Chai SC, Arjmandi BH (2020) Is soy protein effective in reducing cholesterol and improving bone health? Food Funct 11:544–551

    Article  CAS  PubMed  Google Scholar 

  44. Sefton JM, Lyons KD, Beck DT, Haun CT, Romero MA, Mumford PW, Roberson PA, Young KC, Roberts MD, McAdam JS (2020) Markers of Bone Health and Impact of Whey Protein Supplementation in Army Initial Entry Training Soldiers: A Double-Blind Placebo-Controlled Study. Nutrients 12:2225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murphy C, Bilek LDD, Koehler K (2021) Low Energy Availability with and without a High-Protein Diet Suppresses Bone Formation and Increases Bone Resorption in Men: A Randomized Controlled Pilot Study. Nutrients 13:802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pourabbas M, Bagheri R, HooshmandMoghadam B, Willoughby DS, Candow DG, Elliott BT, Forbes SC, Ashtary-Larky D, Eskandari M, Wong A, Dutheil F (2021) Strategic Ingestion of High-Protein Dairy Milk during a Resistance Training Program Increases Lean Mass, Strength, and Power in Trained Young Males. Nutrients 13:948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roschel H, Hayashi AP, Fernandes AL, Jambassi-Filho JC, Hevia-Larraín V, de Capitani M, Santana DA, Gonçalves LS, de Sá-Pinto AL, Lima FR, Sapienza MT, Duarte AJS, Pereira RMR, Phillips SM, Gualano B (2021) Supplement-based nutritional strategies to tackle frailty: A multifactorial, double-blind, randomized placebo-controlled trial. Clin Nutr 40:4849–4858

    Article  CAS  PubMed  Google Scholar 

  48. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097

    Article  PubMed  PubMed Central  Google Scholar 

  49. Higgins J, Thomas J (2020) Cochrane Handbook for Systematic Reviews of Interventions Version 6.1. The Cochrane Collaboration. http://handbook.cochrane.org/

  50. Schwingshackl L, Knüppel S, Schwedhelm C, Hoffmann G, Missbach B, Stelmach-Mardas M, Dietrich S, Eichelmann F, Kontopantelis E, Iqbal K et al (2016) Perspective: NutriGrade: A Scoring System to Assess and Judge the Meta-Evidence of Randomized Controlled Trials and Cohort Studies in Nutrition Research. Adv Nutr 7:994–1004

    Article  PubMed  PubMed Central  Google Scholar 

  51. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  52. Wilson KE. Practical considerations when replacing a DXA system. https://hologiced.com/library/practical-considerations-when-replacing-a-dxa-system/

  53. Genant HK, Grampp S, Glüer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, Van Kuijk C (1994) Universal standardization for dual x-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514

    Article  CAS  PubMed  Google Scholar 

  54. Lu Y, Fuerst T, Hui S, Genant HK (2001) Standardization of bone mineral density at femoral neck, trochanter and Ward’s triangle. Osteoporos Int 12:438–444

    Article  CAS  PubMed  Google Scholar 

  55. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  56. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455–463

    Article  CAS  PubMed  Google Scholar 

  58. Darling AL, Manders RJF, Sahni S, Zhu K, Hewitt CE, Prince RL, Millward DJ, Lanham-New SA (2019) Dietary protein and bone health across the life-course: an updated systematic review and meta-analysis over 40 years. Osteoporos Int 30:741–761

    Article  CAS  PubMed  Google Scholar 

  59. Shams-White MM, Chung M, Du M, Fu Z, Insogna KL, Karlsen MC, LeBoff MS, Shapses SA, Sackey J, Wallace TC, Weaver CM (2017) Dietary protein and bone health: a systematic review and meta-analysis from the National Osteoporosis Foundation. Am J Clin Nutr 105:1528–1543

    Article  CAS  PubMed  Google Scholar 

  60. Wallace TC, Frankenfeld CL (2017) Dietary Protein Intake above the Current RDA and Bone Health: A Systematic Review and Meta-Analysis. J Am Coll Nutr 36:481–496

    Article  CAS  PubMed  Google Scholar 

  61. Groenendijk I, den Boeft L, van Loon LJC, de Groot LCPGM (2019) High Versus low Dietary Protein Intake and Bone Health in Older Adults: a Systematic Review and Meta-Analysis. Comput Struct Biotechnol J 17:1101–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu AM, Sun XL, Lv QB, Zhou Y, Xia DD, Xu HZ, Huang QS, Chi YL (2015) The relationship between dietary protein consumption and risk of fracture: a subgroup and dose-response meta-analysis of prospective cohort studies. Sci Rep 5:9151

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bihuniak JD, Insogna KL (2015) The effects of dietary protein and amino acids on skeletal metabolism. Mol Cell Endocrinol 410:78–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hidayat K, Du X, Shi BM (2019) Milk in the prevention and management of type 2 diabetes: The potential role of milk proteins. Diabetes Metab Res Rev 35(8):e3187

    Article  PubMed  Google Scholar 

  65. Hoppe C, Mølgaard C, Dalum C, Vaag A, Michaelsen KF (2009) Differential effects of casein versus whey on fasting plasma levels of insulin, IGF-1 and IGF-1/IGFBP-3: results from a randomized 7-day supplementation study in prepubertal boys. Eur J Clin Nutr 63:1076–1083

    Article  CAS  PubMed  Google Scholar 

  66. Zeng J, Feng Y, Feng J, Chen X (2020) The effect of soy intervention on insulin-like growth factor 1 levels: A meta-analysis of clinical trials. Phytother Res 34:1570–1577

    Article  CAS  Google Scholar 

  67. Messina M, Magee P (2018) Does soy protein affect circulating levels of unbound IGF-1? Eur J Nutr 57:423–432

    Article  CAS  PubMed  Google Scholar 

  68. Sellmeyer DE, Stone KL, Sebastian A, Cummings SR (2001) A high ratio of dietary animal to vegetable protein increases the rate of bone loss and the risk of fracture in postmenopausal women. Study of Osteoporotic Fractures Research Group. Am J Clin Nutr 73:118–122

    Article  CAS  PubMed  Google Scholar 

  69. Breslau NA, Brinkley L, Hill KD, Pak CY (1988) Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. J Clin Endocrinol Metab 66:140–146

    Article  CAS  PubMed  Google Scholar 

  70. Kerstetter JE, Wall DE, O’Brien KO, Caseria DM, Insogna KL (2006) Meat and soy protein affect calcium homeostasis in healthy women. J Nutr 136:1890–1895

    Article  CAS  PubMed  Google Scholar 

  71. Shams-White MM, Chung M, Fu Z, Insogna KL, Karlsen MC, LeBoff MS, Shapses SA, Sackey J, Shi J, Wallace TC, Weaver CM (2018) Animal versus plant protein and adult bone health: A systematic review and meta-analysis from the National Osteoporosis Foundation. PLoS ONE 13:e0192459

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sahni S, Cupples LA, McLean RR, Tucker KL, Broe KE, Kiel DP, Hannan MT (2010) Protective effect of high protein and calcium intake on the risk of hip fracture in the Framingham offspring cohort. J Bone Miner Res 25:2770–2776

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mangano KM, Walsh SJ, Kenny AM, Insogna KL, Kerstetter JE (2014) Dietary acid load is associated with lower bone mineral density in men with low intake of dietary calcium. J Bone Miner Res 29:500–506

    Article  CAS  PubMed  Google Scholar 

  74. Dargent-Molina P, Sabia S, Touvier M, Kesse E, Bréart G, Clavel-Chapelon F, Boutron-Ruault MC (2008) Proteins, dietary acid load, and calcium and risk of postmenopausal fractures in the E3N French women prospective study. J Bone Miner Res 23:1915–1922

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (no. 82173502, Li-Qiang Qin; no. 82150410453, Khemayanto Hidayat).

Author information

Authors and Affiliations

Authors

Contributions

K.H. designed the research and wrote the paper. K.H. and X.-T. performed the literature search and data extraction. K.H., X.-T., and F.-J.B. performed data analyses. K.H. and R.-R. interpreted the data. F.-J.B. created figures and tables. K.H., R.-R., Y.-J.S., H.-W.S., B.L., and L.-Q.Q. took primary responsibility for the final and intellectual content. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Khemayanto Hidayat, Biao Liu or Li-Qiang Qin.

Ethics declarations

Conflict of interest

Yu-Jie Shi, Hong-Wen Su, and Biao Liu are employed by Yili Group, a dairy product producer. Khemayanto Hidayat, Xing Tong, René Rizzoli, Jing-Bo Fan, and Li-Qiang Qin declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 82.1 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidayat, K., Tong, X., Rizzoli, R. et al. The skeletal safety of milk-derived proteins: A meta-analysis of randomized controlled trials. Osteoporos Int 34, 1937–1949 (2023). https://doi.org/10.1007/s00198-023-06840-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06840-5

Keywords

Navigation