Skip to main content
Log in

Association of C-peptide level with bone mineral density in type 2 diabetes mellitus

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study revealed that there was no significant linear relationship between fasting C-peptide (FCP) level and bone mineral density (BMD) or fracture risk in type 2 diabetes mellitus (T2DM) patients. However, in the FCP ≤ 1.14 ng/ml group, FCP is positively correlated with whole body (WB), lumbar spine (LS), and femoral neck (FN) BMD and negatively correlated with fracture risk.

Purpose

To explore the relationship between C-peptide and BMD and fracture risk in T2DM patients.

Methods

530 T2DM patients were enrolled and divided into three groups by FCP tertiles, and the clinical data were collected. BMD was measured by dual-energy X-ray absorptiometry (DXA). The 10-year probability of major osteoporotic fractures (MOFs) and hip fractures (HFs) was evaluated by adjusted fracture risk assessment tool (FRAX).

Results

In the FCP ≤ 1.14 ng/ml group, FCP level was positively correlated with WB, LS, and FN BMD, while FCP was negatively correlated with fracture risk and osteoporotic fracture history. However, FCP was not correlated with BMD and fracture risk and osteoporotic fracture history in the 1.14 < FCP ≤ 1.73 ng/ml and FCP > 1.73 ng/ml groups. The study has shown that FCP was an independent factor influencing BMD and fracture risk in the FCP ≤ 1.14 ng/ml group.

Conclusions

There is no significant linear relationship between FCP level and BMD or fracture risk in T2DM patients. In the FCP ≤ 1.14 ng/ml group, FCP is positively correlated with WB, LS, and FN BMD and negatively correlated with fracture risk, and FCP is an independent influencing factor of BMD and fracture risk. The findings suggest that FCP may predict the risk of osteoporosis or fracture in some T2DM patients, which has a certain clinical value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

BMD :

Bone mineral density

T2DM :

Type 2 diabetes mellitus

DXA :

Dual-energy X-ray absorptiometry

FCP :

Fasting C-peptide

MOFs :

Major osteoporotic fractures

HFs :

Hip fractures

FRAX :

Fracture risk assessment tool

WB :

Whole body

LS :

Lumbar spine

FN :

Femoral neck

FINS :

Fasting insulin

HbA1c :

Glycated hemoglobin A

PTH :

Parathyroid hormone

25(OH)D :

25 Hydroxyvitamin D

PINP :

Procollagen type I N-propeptide

β-CTx :

Beta-isomer of the C-terminal telopeptide of type I collagen

FBG :

Fasting blood glucose

Cr :

Creatinine

TC :

Total cholesterol

TG :

Triglyceride

HDL-C :

High-density lipoprotein cholesterol

LDL-C :

Low-density lipoprotein cholesterol

Ca :

Serum calcium

P :

Serum phosphorus

ALP :

Alkaline phosphatase

ANOVA :

Analysis of variance

IQR :

Interquartile ranges

BMI :

Body mass index

TGF-β1 :

Transforming growth factor-β1

BMP2 :

Bone morphogenetic protein 2

OVX rats :

Ovariectomized rats

RANKL :

Receptor activator nuclear factor kappa B ligand

Na + -K + ATPase :

Sodium-potassium ATPase

References

  1. Thomas CC, Philipson LH (2015) Update on diabetes classification. Med Clin North Am 99:1–16. https://doi.org/10.1016/j.mcna.2014.08.015

    Article  PubMed  Google Scholar 

  2. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Physiol Rev 98:2133–2223. https://doi.org/10.1152/physrev.00063.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Venugopal SK, Mowery ML, Jialal I (2022) C Peptide. StatPearls Publishing Copyright © 2022, StatPearls Publishing LLC. https://pubmed.ncbi.nlm.nih.gov/30252282/. Accessed 24 Mar 2022

  4. Leighton E, Sainsbury CA, Jones GC (2017) A practical review of C-peptide testing in diabetes. Diabetes Ther 8:475–487. https://doi.org/10.1007/s13300-017-0265-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jones AG, Hattersley AT (2013) The clinical utility of C-peptide measurement in the care of patients with diabetes. Diabet Med 30:803–817. https://doi.org/10.1111/dme.12159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matthews DR, Rudenski AS, Burnett MA, Darling P, Turner RC (1985) The half-life of endogenous insulin and C-peptide in man assessed by somatostatin suppression. Clin Endocrinol 23:71–79. https://doi.org/10.1111/j.1365-2265.1985.tb00185.x

    Article  CAS  Google Scholar 

  7. Hoogwerf BJ, Bantle JP, Gaenslen HE, Greenberg BZ, Senske BJ, Francis R, Goetz FC (1986) Infusion of synthetic human C-peptide does not affect plasma glucose, serum insulin, or plasma glucagon in healthy subjects. Metab Clin Exp 35:122–125. https://doi.org/10.1016/0026-0495(86)90111-3

    Article  CAS  PubMed  Google Scholar 

  8. Kitabchi AE (1970) The biological and immunological properties of pork and beef insulin, proinsulin, and connecting peptides. J Clin Investig 49:979–987. https://doi.org/10.1172/jci106317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johansson BL, Sjöberg S, Wahren J (1992) The influence of human C-peptide on renal function and glucose utilization in type 1 (insulin-dependent) diabetic patients. Diabetologia 35:121–128. https://doi.org/10.1007/bf00402543

    Article  CAS  PubMed  Google Scholar 

  10. Qiao X, Zheng H, Zhang S et al (2017) C-peptide is independent associated with diabetic peripheral neuropathy: a community-based study. Diabetol Metab Syndr 9:12. https://doi.org/10.1186/s13098-017-0208-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang L, Lin P, Ma A et al (2015) C-peptide is independently associated with an increased risk of coronary artery disease in T2DM subjects: a cross-sectional study. PLoS One 10:e0127112. https://doi.org/10.1371/journal.pone.0127112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Panero F, Novelli G, Zucco C, Fornengo P, Perotto M, Segre O, Grassi G, Cavallo-Perin P, Bruno G (2009) Fasting plasma C-peptide and micro- and macrovascular complications in a large clinic-based cohort of type 1 diabetic patients. Diabetes Care 32:301–305. https://doi.org/10.2337/dc08-1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maurotti S, Russo C, Musolino V et al (2020) Effects of C-peptide replacement therapy on bone microarchitecture parameters in streptozotocin-diabetic rats. Calcif Tissue Int 107:266–280. https://doi.org/10.1007/s00223-020-00716-0

    Article  CAS  PubMed  Google Scholar 

  14. Thrailkill KM, Lumpkin CK Jr, Bunn RC, Kemp SF, Fowlkes JL (2005) Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab 289:E735-745. https://doi.org/10.1152/ajpendo.00159.2005

    Article  CAS  PubMed  Google Scholar 

  15. Landreh M, Johansson J, Jörnvall H (2013) C-peptide: a molecule balancing insulin states in secretion and diabetes-associated depository conditions. Horm Metab Res = Hormon- und Stoffwechselforschung = Hormones et metabolisme 45:769–773. https://doi.org/10.1055/s-0033-1347208

    Article  CAS  PubMed  Google Scholar 

  16. Luo J, Jiang J, Huang H, Jiang F, Xu Z, Zhou Z, Zhu H (2021) C-peptide ameliorates high glucose-induced podocyte dysfunction through the regulation of the Notch and TGF-β signaling pathways. Peptides 142:170557. https://doi.org/10.1016/j.peptides.2021.170557

    Article  CAS  PubMed  Google Scholar 

  17. Xu J, Liu J, Gan Y, Dai K, Zhao J, Huang M, Huang Y, Zhuang Y, Zhang X (2020) High-dose TGF-β1 impairs mesenchymal stem cell-mediated bone regeneration via Bmp2 inhibition. J Bone Miner Res Off J Am Soc Bone Miner Res 35:167–180. https://doi.org/10.1002/jbmr.3871

    Article  CAS  Google Scholar 

  18. Ferro Y, Russo C, Russo D et al (2017) Association between low C-peptide and fragility fractures in postmenopausal women without diabetes. J Endocrinol Invest 40:1091–1098. https://doi.org/10.1007/s40618-017-0672-4

    Article  CAS  PubMed  Google Scholar 

  19. Zhang M, Sheng C, You H, Cai M, Gao J, Cheng X, Sheng H, Qu S (2021) Comparing the bone mineral density among male patients with latent autoimmune diabetes and classical type 1 and type 2 diabetes, and exploring risk factors for osteoporosis. J Endocrinol Invest 44:1659–1665. https://doi.org/10.1007/s40618-020-01472-6

    Article  CAS  PubMed  Google Scholar 

  20. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2009) Serum osteocalcin/bone-specific alkaline phosphatase ratio is a predictor for the presence of vertebral fractures in men with type 2 diabetes. Calcif Tissue Int 85:228–234. https://doi.org/10.1007/s00223-009-9272-4

    Article  CAS  PubMed  Google Scholar 

  21. Kanazawa I, Yamaguchi T, Yamamoto M, Yamauchi M, Yano S, Sugimoto T (2007) Serum insulin-like growth factor-I level is associated with the presence of vertebral fractures in postmenopausal women with type 2 diabetes mellitus. Osteoporos Int : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 18:1675-1681.https://doi.org/10.1007/s00198-007-0430-0

  22. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res Off J Am Soc Bone Miner Res 24:702–709. https://doi.org/10.1359/jbmr.081207

    Article  CAS  Google Scholar 

  23. Kanis JA, Harvey NC, Johansson H, Odén A, Leslie WD, McCloskey EV (2017) FRAX update. J Clin Densitom Off J Int Soc Clin Densitom 20:360–367. https://doi.org/10.1016/j.jocd.2017.06.022

    Article  Google Scholar 

  24. Liu JM, Zhu DL, Mu YM, Xia WB (2019) Management of fracture risk in patients with diabetes-Chinese Expert Consensus. J Diabetes 11:906–919. https://doi.org/10.1111/1753-0407.12962

    Article  PubMed  Google Scholar 

  25. Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D (2018) Comparison of methods for improving fracture risk assessment in diabetes: the Manitoba BMD registry. J Bone Miner Res Off J Am Soc Bone Miner Res 33:1923–1930. https://doi.org/10.1002/jbmr.3538

    Article  Google Scholar 

  26. Lv F, Cai X, Zhang R, Zhou L, Zhou X, Han X, Ji L (2021) Sex-specific associations of serum insulin-like growth factor-1 with bone density and risk of fractures in Chinese patients with type 2 diabetes. Osteoporos Int : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 32:1165-1173.https://doi.org/10.1007/s00198-020-05790-6

  27. Wen Z, Ding N, Chen R, Liu S, Wang Q, Sheng Z, Liu H (2021) Comparison of methods to improve fracture risk assessment in chinese diabetic postmenopausal women: a case-control study. Endocrine 73:209–216. https://doi.org/10.1007/s12020-021-02724-y

    Article  CAS  PubMed  Google Scholar 

  28. Paschou SA, Dede AD, Anagnostis PG, Vryonidou A, Morganstein D, Goulis DG (2017) Type 2 diabetes and osteoporosis: a guide to optimal management. J Clin Endocrinol Metab 102:3621–3634. https://doi.org/10.1210/jc.2017-00042

    Article  PubMed  Google Scholar 

  29. Russo C, Lazzaro V, Gazzaruso C et al (2017) Proinsulin C-peptide modulates the expression of ERK1/2, type I collagen and RANKL in human osteoblast-like cells (Saos-2). Mol Cell Endocrinol 442:134–141. https://doi.org/10.1016/j.mce.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  30. Galuska D, Pirkmajer S, Barrès R, Ekberg K, Wahren J, Chibalin AV (2011) C-peptide increases Na, K-ATPase expression via PKC- and MAP kinase-dependent activation of transcription factor ZEB in human renal tubular cells. PLoS One 6:e28294. https://doi.org/10.1371/journal.pone.0028294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nordquist L, Shimada K, Ishii T, Furuya DT, Kamikawa A, Kimura K (2010) Proinsulin C-peptide prevents type-1 diabetes-induced decrease of renal Na+-K+-ATPase alpha1-subunit in rats. Diabetes Metab Res Rev 26:193–199. https://doi.org/10.1002/dmrr.1071

    Article  CAS  PubMed  Google Scholar 

  32. Caverzasio J, Selz T, Bonjour JP (1988) Characteristics of phosphate transport in osteoblastlike cells. Calcif Tissue Int 43:83–87. https://doi.org/10.1007/bf02555151

    Article  CAS  PubMed  Google Scholar 

  33. Marchini M, Ashkin MR, Bellini M, Sun MM, Workentine ML, Okuyan HM, Krawetz R, Beier F, Rolian C (2021) A Na(+)/K(+) ATPase pump regulates chondrocyte differentiation and bone length variation in mice. Front Cell Dev Biol 9:708384. https://doi.org/10.3389/fcell.2021.708384

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tang Z, Chen S, Ni Y, Zhao R, Zhu X, Yang X, Zhang X (2021) Role of Na(+), K(+)-ATPase ion pump in osteoinduction. Acta Biomater 129:293–308. https://doi.org/10.1016/j.actbio.2021.05.026

    Article  CAS  PubMed  Google Scholar 

  35. Xiong S, Yang X, Yan X, Hua F, Zhu M, Guo L, Wu Z, Bian JS (2018) Immunization with Na(+)/K(+) ATPase DR peptide prevents bone loss in an ovariectomized rat osteoporosis model. Biochem Pharmacol 156:281–290. https://doi.org/10.1016/j.bcp.2018.08.024

    Article  CAS  PubMed  Google Scholar 

  36. Hu Y, Li X, Yan X, Huang G, Dai R, Zhou Z (2021) Bone mineral density spectrum in individuals with type 1 diabetes, latent autoimmune diabetes in adults, and type 2 diabetes. Diabetes Metab Res Rev 37:e3390. https://doi.org/10.1002/dmrr.3390

    Article  CAS  PubMed  Google Scholar 

  37. López-Ibarra PJ, Pastor MM, Escobar-Jiménez F, Pardo MD, González AG, Luna JD, Requena ME, Diosdado MA (2001) Bone mineral density at time of clinical diagnosis of adult-onset type 1 diabetes mellitus. Endocr Pract Off J Am Coll Endocrinol Am Assoc Clin Endocrinologists 7:346–351. https://doi.org/10.4158/ep.7.5.346

    Article  Google Scholar 

  38. Rigler R, Pramanik A, Jonasson P et al (1999) Specific binding of proinsulin C-peptide to human cell membranes. Proc Natl Acad Sci USA 96:13318–13323. https://doi.org/10.1073/pnas.96.23.13318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henriksson M, Pramanik A, Shafqat J, Zhong Z, Tally M, Ekberg K, Wahren J, Rigler R, Johansson J, Jörnvall H (2001) Specific binding of proinsulin C-peptide to intact and to detergent-solubilized human skin fibroblasts. Biochem Biophys Res Commun 280:423–427. https://doi.org/10.1006/bbrc.2000.4135

    Article  CAS  PubMed  Google Scholar 

  40. Pramanik A, Ekberg K, Zhong Z et al (2001) C-peptide binding to human cell membranes: importance of Glu27. Biochem Biophys Res Commun 284:94–98. https://doi.org/10.1006/bbrc.2001.4917

    Article  CAS  PubMed  Google Scholar 

  41. Yamaguchi T, Kanazawa I, Yamamoto M, Kurioka S, Yamauchi M, Yano S, Sugimoto T (2009) Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone 45:174–179. https://doi.org/10.1016/j.bone.2009.05.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all patients and their families for consenting use their medical documentations and information that lead to our paper.

Funding

This work was supported by the Clinical Medical Research Center of Endocrine Diseases of Gansu Province [No. 20JR10FA667], the Science and Technology Planning Project of Lanzhou Chengguan District [No. 2021JSCX0011], and the Natural Science Foundation of Gansu Province in 2021 [No. 21JR1RA080].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihong Lv.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Bai, J., Li, L. et al. Association of C-peptide level with bone mineral density in type 2 diabetes mellitus. Osteoporos Int 34, 1465–1476 (2023). https://doi.org/10.1007/s00198-023-06785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-023-06785-9

Keywords

Navigation