Skip to main content

Advertisement

Log in

Scaffolds: a biomaterial engineering in targeted drug delivery for osteoporosis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Osteoporosis is an increasingly common condition that causes low bone density, porous bone, and increased fracture risk. Treatments for osteoporosis are divided into two categories: (a) antiresorptive and (b) anabolic. To decrease side effects of drug and dosage level variations caused by several consecutive administrations, various drug delivery systems have been proposed. Among them, scaffolds are one of the drug delivery systems that led to drug impart with high loading and suitable efficiency to specific sites which retain active agents at acceptable therapeutic levels. The purpose of this review was to explain the role of scaffolds in targeted drug delivery to bone tissue for the treatment of osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Aln :

Alendronate

ALP :

Alkaline phosphates

BMP :

Bone morphogenetic proteins

BPs :

Bisphosphonates

β-TCP :

Beta-tricalcium phosphate

Col :

Collagen

CS :

Chitosan

ECM :

Extracellular matrix

Ga :

Gallium

Gel/HNTs :

Gelatin-halloysite nanotubes

GRGDSP :

Gly-Arg-Gly-Asp-Ser-Pro

Hap :

Hydroxylapatite

HNT :

Halloysite nanotube

HMG-CoA :

3-Hydroxy-3-methylglutaryl coenzyme A

IKVAV :

Ile-Lys-Val-Ala-Val

Micro-CT :

Micro computed tomography

MBG :

Mesoporous bioactive glass

OCN :

Osteocalcin

OPN :

Osteopontin

PANI :

Polyaniline

PCL :

Poly-ε-caprolactone

pDA :

Polydopamine

PDIPF :

Polydiisopropyl fumarate

PLGA :

Poly lactic-co-glycolic acid

POFC :

Poly (1, 8-octanediol-co F127 citrate)

PSHRN :

Pro-His-Ser-Arg-Asn

PTH :

Parathyroid hormones

PVA :

Polyvinyl alcohol

RANKL :

Human receptor activator of NF-κB ligand

RGD :

Arg-Gly-Asp

RLX :

Raloxifene

sCT :

Salmon calcitonin

SrR :

Strontium ranelate

TiO 2 :

Titanium oxide

UPPE :

Unsaturated polyphosphoester

ZOL :

Zoledronic acid

References

  1. Michaelsson K, Aspenberg P (2016) Postmenopausal osteoporosis. NEJM 374(21):2095–2097. https://doi.org/10.1056/NEJMc1602599

    Article  Google Scholar 

  2. Mafi Golchin M et al (2016) Osteoporosis: a silent disease with complex genetic contribution. JGG 43(2):49–61. https://doi.org/10.1016/j.jgg.2015.12.001

    Article  Google Scholar 

  3. Camacho PM et al (2016) American Association of Clinical Endocrinologists and American College of Endocrinology clinical practice guidelines for the diagnosis and treatment of postmenopausal osteoporosis—2016–Executive Summary. Endocr Pract 22(9):1111–1118. https://doi.org/10.4158/EP161435.ESGL

    Article  Google Scholar 

  4. Tu KN, Lie JD, Wan CK, Cameron M, Austel AG, Nguyen JK, Van K, Hyun D (2018) Osteoporosis: a review of treatment options. Pharmacol Ther 43(2):92–104

    Google Scholar 

  5. Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, & Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015https://doi.org/10.1155/2015/421746

  6. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1995) Bone biology. J Bone Joint Surg Am 77(8):1256–1275

    Article  Google Scholar 

  7. Robling AG, Castillo AB, Turner CH (2006) Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng 8:455–498. https://doi.org/10.1146/annurev.bioeng.8.061505.095721

    Article  CAS  Google Scholar 

  8. Zhang ML, Cheng J, Xiao YC, Yin RF, Feng X (2017) Raloxifene microsphere-embedded collagen/chitosan/β-tricalcium phosphate scaffold for effective bone tissue engineering. Int J Pharm 518(1–2):80–85. https://doi.org/10.1016/j.ijpharm.2016.12.031

    Article  CAS  Google Scholar 

  9. Boche M, Pokharkar V (2020) Microemulsion assisted transdermal delivery of a hydrophilic anti-osteoporotic drug: formulation, in vivo pharmacokinetic studies, in vitro cell osteogenic activity. J Appl Pharm Sci 10(8):008–019. https://doi.org/10.7324/JAPS.2020.10802

    Article  CAS  Google Scholar 

  10. Chesnut C. 3, Azria M, Silverman S, Engelhardt M, Olson M, & Mindeholm L (2008) Salmon calcitonin: a review of current and future therapeutic indications. Osteoporos Int 19(4): 479-491.https://doi.org/10.1007/s00198-007-0490-1

  11. Blick SK, Dhillon S, Keam SJ (2008) Teriparatide Drugs 68(18):2709–2737. https://doi.org/10.2165/0003495-200868180-00012

    Article  CAS  Google Scholar 

  12. Marie PJ, Felsenberg D, Brandi ML (2011) How strontium ranelate, via opposite effects on bone resorption and formation, prevents osteoporosis. Osteoporos Int 22(6):1659–1667. https://doi.org/10.1007/s00198-010-1369-0

    Article  CAS  Google Scholar 

  13. Kurtuldu F, Mutlu N, Boccaccini AR, Galusek D (2022) Gallium containing bioactive materials: A REVIEW Of anticancer, antibacterial, and osteogenic properties. Bioactive Materials 17:125–146. https://doi.org/10.1016/j.bioactmat.2021.12.034

    Article  CAS  Google Scholar 

  14. Park SB, Park SH, Kim NH, Chung CK (2013) BMP-2 induced early bone formation in spine fusion using rat ovariectomy osteoporosis model. Spine J 13(10):1273–1280. https://doi.org/10.1016/j.spinee.2013.06.010

    Article  Google Scholar 

  15. Pacheco-Pantoja EL, Alvarez-Nemegyei J (2014) Statins and osteoporosis: a latent promise. Reumatologia Clinica 10(4):201–203. https://doi.org/10.1016/j.reuma.2014.04.005

    Article  Google Scholar 

  16. Diab DL, Watts NB (2014) Denosumab in osteoporosis. Expert Opin Drug Saf 13(2):247–253. https://doi.org/10.1517/14740338.2014.860133

    Article  CAS  Google Scholar 

  17. Garg T, Singh O, Arora S, & Murthy RSR (2012) Scaffold: a novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 29(1). https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v29.i1.10

  18. Agrawal P, Soni S, Mittal G, Bhatnagar A (2014) Role of polymeric biomaterials as wound healing agents. IJLEW 13(3):180–190. https://doi.org/10.1177/1534734614544523

    Article  CAS  Google Scholar 

  19. Kumar P, Dehiya BS, & Sindhu A (2018) Bioceramics for hard tissue engineering applications. A review. Int J Appl Eng Res 13(5):2744–2752

  20. Chung HJ, Park TG (2007) Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv Drug Deliv Rev 59(4–5):249–262. https://doi.org/10.1016/j.addr.2007.03.015

    Article  CAS  Google Scholar 

  21. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering Adv. Drug Deliv Rev 59(4–5):187–206. https://doi.org/10.1016/j.addr.2007.04.001

    Article  CAS  Google Scholar 

  22. Freyman TM, Yannas IV, Gibson LJ (2001) Cellular materials as porous scaffolds for tissue engineering. Prog Mater Sci 46(3–4):273–282. https://doi.org/10.1016/S0079-6425(00)00018-9

    Article  CAS  Google Scholar 

  23. Hesari Z, Dinarvand R, Soleimani M (2012) Preparation of PLGA nanofiber scaffold in tissue engineering using electrospinning technique. Res Pharm Sci 7(5):256

    Google Scholar 

  24. Willerth SM, Sakiyama-Elbert SE (2007) Approaches to neural tissue engineering using scaffolds for drug delivery Adv. Drug Deliv Rev 59(4–5):325–338. https://doi.org/10.1016/j.addr.2007.03.014

    Article  CAS  Google Scholar 

  25. Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262. https://doi.org/10.1016/j.msec.2017.05.017

    Article  CAS  Google Scholar 

  26. Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425. https://doi.org/10.1016/j.biomaterials.2005.11.025

    Article  CAS  Google Scholar 

  27. Veleirinho B, Berti FV, Dias PF, Maraschin M, Ribeiro-do-Valle RM, Lopes-da-Silva JA (2013) Manipulation of chemical composition and architecture of non-biodegradable poly (ethylene terephthalate)/chitosan fibrous scaffolds and their effects on L929 cell behavior. Mater Sci Eng C 33(1):37–46. https://doi.org/10.1016/j.msec.2012.07.047

    Article  CAS  Google Scholar 

  28. Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502. https://doi.org/10.1089/ten.teb.2012.0437

    Article  CAS  Google Scholar 

  29. Adel IM, ElMeligy MF, Elkasabgy NA (2022) Conventional and recent trends of scaffolds fabrication: a superior mode for tissue engineering. Pharmaceutics 14(2):306. https://doi.org/10.3390/pharmaceutics14020306

    Article  CAS  Google Scholar 

  30. Yazdani M, Tavakoli O, Khoobi M, Wu YS, Faramarzi MA, Gholibegloo E, Farkhondeh S (2022) Beta-carotene/cyclodextrin-based inclusion complex: Improved loading, solubility, stability, and cytotoxicity. J Incl Phenom Macrocycl Chem 102(1):55–64. https://doi.org/10.1007/s10847-021-01100-7

    Article  CAS  Google Scholar 

  31. Salehipour M, Rezaei S, Rezaei M, Yazdani M, Mogharabi-Manzari M (2021) Opportunities and challenges in biomedical applications of metal–organic frameworks. J Inorg Organomet Polym Mater 31(12):4443–4462. https://doi.org/10.1007/s10904-021-02118-7

    Article  CAS  Google Scholar 

  32. Repanas A, Andriopoulou S, Glasmacher B (2016) The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J Drug Deliv Sci Technol 31:137–146. https://doi.org/10.1016/j.jddst.2015.12.007

    Article  CAS  Google Scholar 

  33. Kamel R, El-Wakil NA, Abdelkhalek AA, Elkasabgy NA (2020) Nanofibrillated cellulose/cyclodextrin based 3D scaffolds loaded with raloxifene hydrochloride for bone regeneration. Int J Biol Macromol 156:704–716. https://doi.org/10.1016/j.ijbiomac.2020.04.019

    Article  CAS  Google Scholar 

  34. Murphy CM, Schindeler A, Gleeson JP, Nicole YC, Cantrill LC, Mikulec K, ... & Little DG (2014) A collagen–hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomater 10(5):2250-2258.https://doi.org/10.1016/j.actbio.2014.01.016

  35. Ray S, Thormann U, Eichelroth M, Budak M, Biehl C, Rupp M, ... & Alt V (2018). Strontium and bisphosphonate coated iron foam scaffolds for osteoporotic fracture defect healing. Biomaterials 157:1-16.https://doi.org/10.1016/j.biomaterials.2017.11.049

  36. Nie H, Soh BW, Fu YC, Wang CH (2008) Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol Bioeng 99(1):223–234. https://doi.org/10.1002/bit.21517

    Article  CAS  Google Scholar 

  37. Niu X, Feng Q, Wang M, Guo X, Zheng Q (2009) Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. JCR 134(2):111–117. https://doi.org/10.1016/j.jconrel.2008.11.020

    Article  CAS  Google Scholar 

  38. Shen X, Zhang Y, Gu Y, Xu Y, Liu Y, Li B, Chen L (2016) Sequential and sustained release of SDF-1 and BMP-2 from silk fibroin-nanohydroxyapatite scaffold for the enhancement of bone regeneration. Biomaterials 106:205–216. https://doi.org/10.1016/j.biomaterials.2016.08.023

    Article  CAS  Google Scholar 

  39. Hu Y, Zhang C, Zhang S, Xiong Z, Xu J (2003) Development of a porous poly (l-lactic acid)/hydroxyapatite/collagen scaffold as a BMP delivery system and its use in healing canine segmental bone defect. J Biomed Mater Res A 67(2):591–598. https://doi.org/10.1002/jbm.a.10070

    Article  CAS  Google Scholar 

  40. Wang B, Guo Y, Chen X, Zeng C, Hu Q, Yin W, ... & Yu F (2018) Nanoparticle-modified chitosan-agarose-gelatin scaffold for sustained release of SDF-1 and BMP-2. Int J Nanomedicine 13:7395-7408.https://doi.org/10.2147/IJN.S180859

  41. Cui W, Liu Q, Yang L, Wang K, Sun T, Ji Y, ... & Guo X (2018) Sustained delivery of BMP-2-related peptide from the true bone ceramics/hollow mesoporous silica nanoparticles scaffold for bone tissue regeneration. ACS Biomater Sci Eng 4(1):211221.https://doi.org/10.1021/acsbiomaterials.7b00506

  42. Nair BP, Sindhu M, Nair PD (2016) Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf B Biointerfaces 143:423–430. https://doi.org/10.1016/j.colsurfb.2016.03.033

    Article  CAS  Google Scholar 

  43. Ge C, Chen F, Mao L, Liang Q, Su Y, Liu C (2020) Strontium ranelate-loaded POFC/β-TCP porous scaffolds for osteoporotic bone repair. RSC Adv 10(15):9016–9025. https://doi.org/10.1039/C9RA08909H

    Article  CAS  Google Scholar 

  44. Abdollahi Boraei SB, Nourmohammadi J, Bakhshandeh B, Dehghan MM, Gholami H, Calle Hernández D, ... & Ferrari B (2021) Enhanced osteogenesis of gelatin-halloysite nanocomposite scaffold mediated by loading strontium ranelate. Int J Polym Mater Polym Biomater 70(6):392-402.https://doi.org/10.1080/00914037.2020.1725754

  45. Lei Y, Xu Z, Ke Q, Yin W, Chen Y, Zhang C, Guo Y (2017) Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Mater Sci Eng C 72:134–142. https://doi.org/10.1016/j.msec.2016.11.063

    Article  CAS  Google Scholar 

  46. Lino AB, McCarthy AD, Fernández JM (2019) Evaluation of strontium-containing PCL-PDIPF scaffolds for bone tissue engineering: in vitro and in vivo studies. Ann Biomed Eng 47(3):902–912. https://doi.org/10.1007/s10439-018-02183-z

    Article  Google Scholar 

  47. Zhang W, Chen J, Tao J, Hu C, Chen L, Zhao H, ... & Ouyang HW (2013) The promotion of osteochondral repair by combined intra-articular injection of parathyroid hormone-related protein and implantation of a bi-layer collagen-silk scaffold. Biomaterials 34(25):6046-6057. https://doi.org/10.1016/j.biomaterials.2013.04.055

  48. Gentile P, Nandagiri VK, Pabari R, Daly J, Tonda-Turo C, Ciardelli G, Ramtoola Z (2015) Influence of parathyroid hormone-loaded PLGA nanoparticles in porous scaffolds for bone regeneration. Int J Mol Sci 16(9):20492–20510. https://doi.org/10.3390/ijms160920492

    Article  CAS  Google Scholar 

  49. Wu R, Ma B, Zhou Q, Tang C (2017) Salmon calcitonin-loaded PLGA microspheres/calcium phosphate cement composites for osteoblast proliferation. J Appl Polym Sci 134(44):45486. https://doi.org/10.1002/app.45486

    Article  CAS  Google Scholar 

  50. Bediako EG, Nyankson E, Dodoo-Arhin D, Agyei-Tuffour B, Łukowiec D, Tomiczek B, ... & Efavi JK (2018) Modified halloysite nanoclay as a vehicle for sustained drug delivery. Heliyon 4(7):e00689. https://doi.org/10.1016/j.heliyon.2018.e00689

  51. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals—a review. Clay Miner 40(4):383–426. https://doi.org/10.1180/0009855054040180

    Article  CAS  Google Scholar 

  52. Rapacz-Kmita A, Foster K, Mikołajczyk M, Gajek M, Stodolak-Zych E, Dudek M (2019) Functionalized halloysite nanotubes as a novel efficient carrier for gentamicin. Mater Lett 24:13–16. https://doi.org/10.1016/j.matlet.2019.02.015

    Article  CAS  Google Scholar 

  53. Fakhrullin RF, Lvov YM (2016) Halloysite clay nanotubes for tissue engineering. Nanomedicine 11(17):2243–2246. https://doi.org/10.2217/nnm-2016-0250

    Article  CAS  Google Scholar 

  54. Lazzara G, Cavallaro G, Panchal A, Fakhrullin R, Stavitskaya A, Vinokurov V, Lvov Y (2018) An assembly of organic-inorganic composites using halloysite clay nanotubes. Curr Opin Colloid Interface Sci 35:42–50. https://doi.org/10.1016/j.cocis.2018.01.002

    Article  CAS  Google Scholar 

  55. Zhao Y, Li Z, Jiang Y, Liu H, Feng Y, Wang Z, ... & Lin Q (2020) Bioinspired mineral hydrogels as nanocomposite scaffolds for the promotion of osteogenic marker expression and the induction of bone regeneration in osteoporosis. Acta Biomater.https://doi.org/10.1016/j.actbio.2020.06.024

  56. Del Buffa S, Bonini M, Ridi F, Severi M, Losi P, Volpi S, ... & Baglioni P (2015) Design and characterization of a composite material based on Sr (II)-loaded clay nanotubes included within a biopolymer matrix. J Colloid Interface Sci 448:501-507.https://doi.org/10.1016/j.jcis.2015.02.043

  57. Lee YJ, Lee SC, Jee SC, Sung JS, Kadam AA (2019) Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nanoflakes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells. Colloids Surf B Biointerfaces 173:18–26. https://doi.org/10.1016/j.colsurfb.2018.09.045

    Article  CAS  Google Scholar 

  58. Liu, H., He, Z., & Simon, H. U. (2013). Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin. Cancer Biol. 23(5):352–360. Academic Press. https://doi.org/10.1016/j.semcancer.2013.06.008

  59. Ahmed FR, Shoaib MH, Azhar M, Um SH, Yousuf RI, Hashmi S, Dar A (2015) In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf B Biointerfaces 135:50–55. https://doi.org/10.1016/j.colsurfb.2015.07.021

    Article  CAS  Google Scholar 

  60. Lai X, Agarwal M, Lvov YM, Pachpande C, Varahramyan K, Witzmann FA (2013) Proteomic profiling of halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33(11):1316–1329. https://doi.org/10.1002/jat.2858

    Article  CAS  Google Scholar 

  61. Zhao W, Li J, Jin K, Liu W, Qiu X, Li C (2016) Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. Mater Sci Eng C 59:1181–1194. https://doi.org/10.1016/j.msec.2015.11.026

    Article  CAS  Google Scholar 

  62. Garcia-Garcia P, Reyes R, Pérez-Herrero E, Arnau MR, Evora C, & Delgado A (2020) Alginate-hydrogel versus alginate-solid system. Efficacy in bone regeneration in osteoporosis. Mater Sci Eng C 115:111009. https://doi.org/10.1016/j.msec.2020.111009

  63. Zhu B, Xu W, Liu J, Ding J, Chen X (2018) Osteoinductive agents-incorporated three-dimensional biphasic polymer scaffold for synergistic bone regeneration. ACS Biomater Sci Eng 5(2):986–995. https://doi.org/10.1021/acsbiomaterials.8b01371

    Article  CAS  Google Scholar 

  64. Gao T, Zhang N, Wang Z, Wang Y, Liu Y, Ito Y, Zhang P (2015) Biodegradable Microcarriers of poly (lactide-co-glycolide) and nano-hydroxyapatite decorated with IGF-1 via polydopamine coating for enhancing cell proliferation and osteogenic differentiation. Macromol Biosci 15(8):1070–1080. https://doi.org/10.1002/mabi.201500069

    Article  CAS  Google Scholar 

  65. Tian Z, Zhu Y, Qiu J, Guan H, Li L, Zheng S, ... & Xiao J (2012) Synthesis and characterization of UPPE-PLGA-rhBMP2 scaffolds for bone regeneration. J Huazhong Univ Sci Technol Med Sci 32(4):563-570.https://doi.org/10.1007/s11596-012-0097-4

  66. Gentile P, Chiono V, Carmagnola I, Hatton PV (2014) An overview of poly (lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15(3):3640–3659. https://doi.org/10.3390/ijms15033640

    Article  CAS  Google Scholar 

  67. Janmohammadi M, Nourbakhsh MS (2019) Electrospun polycaprolactone scaffolds for tissue engineering: a review. Int J Polym Mater Polym Biomater 68(9):527–539. https://doi.org/10.1080/00914037.2018.1466139

    Article  CAS  Google Scholar 

  68. Dwivedi R, Kumar S, Pandey R, Mahajan A, Nandana D, Katti DS, Mehrotra D (2020) Polycaprolactone as biomaterial for bone scaffolds: Review of literatureJ. Oral Biol Craniofacial Res 10(1):381–388. https://doi.org/10.1016/j.jobcr.2019.10.003

    Article  Google Scholar 

  69. Yun YP, Kim SJ, Lim YM, Park K, Kim HJ, Jeong SI, ... & Song HR (2014) The effect of alendronate-loaded polycarprolactone nanofibrous scaffolds on osteogenic differentiation of adipose-derived stem cells in bone tissue regeneration. J Biomed Nanotech 10(6):1080-1090. https://doi.org/10.1166/jbn.2014.1819

  70. Remya KR, Chandran S, John A, Ramesh P (2019) Pamidronate-encapsulated electrospun polycaprolactone as a potential bone regenerative scaffold. J Bioact Compat Polym 34(2):131–149. https://doi.org/10.1177/0883911519835142

    Article  CAS  Google Scholar 

  71. Remya KR, Joseph J, Mani S, John A, Varma HK, Ramesh P (2013) Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone–polyethyleneglycol–polycaprolactone blend scaffold for bone tissue engineering applications. J Biomed Nanotechnol 9(9):1483–1494. https://doi.org/10.1166/jbn.2013.1640

    Article  CAS  Google Scholar 

  72. Rajan RK, Chandran S, Sreelatha HV, John A, Parameswaran R (2020) Pamidronate-encapsulated electrospun polycaprolactone-based composite scaffolds for osteoporotic bone defect repair. ACS Appl Bio Mater 3(4):1924–1933. https://doi.org/10.1021/acsabm.9b01077

    Article  CAS  Google Scholar 

  73. Rezk AI, Bhattarai DP, Park J, Park CH, Kim CS (2020) Polyaniline-coated titanium oxide nanoparticles and simvastatin-loaded poly (ε-caprolactone) composite nanofibers scaffold for bone tissue regeneration application. Colloids Surf B: Biointerfaces 192:111007. https://doi.org/10.1016/j.colsurfb.2020.111007

    Article  CAS  Google Scholar 

  74. Mondal T, Sunny MC, Khastgir D, Varma HK, Ramesh P (2012) Poly (l-lactide-co-Є caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds. Mater Sci Eng C 32(4):697–706. https://doi.org/10.1016/j.msec.2012.01.011

    Article  CAS  Google Scholar 

  75. Hashemi SF, Mehrabi M, Ehterami A, Gharravi AM, Bitaraf FS, Salehi M (2021) In-vitro and in-vivo studies of PLA/PCL/gelatin composite scaffold containing ascorbic acid for bone regeneration. J Drug Deliv Sci Technol 61:102077. https://doi.org/10.1016/j.jddst.2020.102077

    Article  CAS  Google Scholar 

  76. Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S (2018) PCL-based composite scaffold matrices for tissue engineering applications. Mol Biotechnol 60(7):506–532. https://doi.org/10.1007/s12033-018-0084-5

    Article  CAS  Google Scholar 

  77. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M (2013) Scaffold-based repair for cartilage healing: a systematic review and technical note ARTHROSCOPY 29(1):174–186. https://doi.org/10.1016/j.arthro.2012.05.891

    Article  Google Scholar 

  78. An B, Lin YS, Brodsky B (2016) Collagen interactions: Drug design and delivery. Adv Drug Deliv Rev 97:69–84. https://doi.org/10.1016/j.addr.2015.11.013

    Article  CAS  Google Scholar 

  79. Zeng Y, Zhou M, Mou S, Yang J, Yuan Q, Guo L, ... & Wang Z (2020) Sustained delivery of alendronate by engineered collagen scaffold for the repair of osteoporotic bone defects and resistance to bone loss. J Biomed Mater Res A. 108(12):2460-2472.https://doi.org/10.1002/jbm.a.36997

  80. Murphy CM, Schindeler A, Gleeson JP, Nicole YC, Cantrill LC, Mikulec K, ... & Little DG (2014) A collagen–hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomater 10(5):2250-2258.https://doi.org/10.1016/j.actbio.2014.01.016

  81. Ma X, He Z, Han F, Zhong Z, Chen L, Li B (2016) Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration. Colloids Surf B: Biointerfaces 143:81–87. https://doi.org/10.1016/j.colsurfb.2016.03.025

    Article  CAS  Google Scholar 

  82. Wang X, Zhang G, Qi F, Cheng Y, Lu X, Wang L, ... & Zhao B (2018) Enhanced bone regeneration using an insulin-loaded nano-hydroxyapatite/collagen/PLGA composite scaffold. Int J Nanomedicine 13:117.https://doi.org/10.2147/IJN.S150818

  83. Rico-Llanos GA, Borrego-González S, Moncayo-Donoso M, Becerra J, Visser R (2021) Collagen type I biomaterials as scaffolds for bone tissue engineering. Polymers 13(4):599. https://doi.org/10.3390/polym13040599

    Article  CAS  Google Scholar 

  84. Reddy MSB, Ponnamma D, Choudhary R, Sadasivuni KK (2021) A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers 13(7):1105. https://doi.org/10.3390/polym13071105

    Article  CAS  Google Scholar 

  85. Taghvaei AH, Danaeifar F, Gammer C, Eckert J, Khosravimelal S, Gholipourmalekabadi M (2020) Synthesis and characterization of novel mesoporous strontium-modified bioactive glass nanospheres for bone tissue engineering applications. Microporous Mesoporous Mater 294:109889. https://doi.org/10.1016/j.micromeso.2019.109889

    Article  CAS  Google Scholar 

  86. Zhang X, Zeng D, Li N, Wen J, Jiang X, Liu C, Li Y (2016) Functionalized mesoporous bioactive glass scaffolds for enhanced bone tissue regeneration. Sci Rep 6(1):1–12. https://doi.org/10.1038/srep19361

    Article  CAS  Google Scholar 

  87. Wang X, Zeng D, Weng W, Huang Q, Zhang X, Wen J, ... & Jiang X (2018) Alendronate delivery on amino modified mesoporous bioactive glass scaffolds to enhance bone regeneration in osteoporosis rats. Artif Cells Nanomed Biotechnol 46(sup2):171-181.https://doi.org/10.1080/21691401.2018.1453825

  88. Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Charalambopoulou G, Tzetzis D, Bikiaris D (2019) Composite membranes of poly (ε-caprolactone) with bisphosphonate-loaded bioactive glasses for potential bone tissue engineering applications. Molecules 24(17):3067. https://doi.org/10.3390/molecules24173067

    Article  CAS  Google Scholar 

  89. Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Tao C, ... & Zhang C (2015) Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater 12:270-280.https://doi.org/10.1016/j.actbio.2014.10.015

  90. Bai H, Cui Y, Wang C, Wang Z, Luo W, Liu Y, ... & Liu H (2020) 3D printed porous biomimetic composition sustained release zoledronate to promote osteointegration of osteoporotic defects. Mater Des 189:108513. https://doi.org/10.1016/j.matdes.2020.108513

  91. Zhao R, Chen S, Zhao W, Yang L, Yuan B, Ioan VS, ... & Zhang X (2020) A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects. Theranostics 10(4):1572–1589.https://doi.org/10.7150/thno.40103

  92. Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. JCR 193:282–295. https://doi.org/10.1016/j.jconrel.2014.04.026

    Article  CAS  Google Scholar 

  93. Akbari V, Rezazadeh M, Minayian M, Amirian M, Moghadas A, Talebi A (2018) Effect of freeze drying on stability, thermo-responsive characteristics, and in vivo wound healing of erythropoietin-loaded trimethyl chitosan/glycerophosphate hydrogel. Res Pharm Sci 13(6):476. https://doi.org/10.4103/1735-5362.245959

    Article  Google Scholar 

  94. Sangkert S, Kamonmattayakul S, Lin CW, & Meesane J (2016) Modified silk and chitosan scaffolds with collagen assembly for osteoporosis. Bioinspired, Biomim. Nanobiomaterials 5(1):1–11. https://doi.org/10.1680/jbibn.15.00006

  95. Kim SE, Suh DH, Yun YP, Lee JY, Park K, Chung JY, Lee DW (2012) Local delivery of alendronate eluting chitosan scaffold can effectively increase osteoblast functions and inhibit osteoclast differentiation. J Mater Sci Mater Med 23(11):2739–2749. https://doi.org/10.1007/s10856-012-4729-9

    Article  CAS  Google Scholar 

  96. Chen Y, Frith JE, Dehghan-Manshadi A, Attar H, Kent D, Soro NDM, ... & Dargusch MS (2017) Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 75:169-174.https://doi.org/10.1016/j.jmbbm.2017.07.015

  97. Mu C, Hu Y, Huang L, Shen X, Li M, Li L, ... & Cai K (2018) Sustained raloxifene release from hyaluronan-alendronate-functionalized titanium nanotube arrays capable of enhancing osseointegration in osteoporotic rabbits. Mater Sci Eng C 82:345-353.https://doi.org/10.1016/j.msec.2017.08.056

  98. Yang XJ, Wang FQ, Lu CB, Zou JW, Hu JB, Yang Z, ... & Zhang Y (2020) Modulation of bone formation and resorption using a novel zoledronic acid loaded gelatin nanoparticles integrated porous titanium scaffold: an in vitro and in vivo study. Biomed Mater 15(5):055013. https://doi.org/10.1088/1748-605X/ab8720/meta

  99. Hassanzadeh Nemati N, Mirhadi SM (2020) Synthesis and characterization of highly porous TiO2 scaffolds for bone defects. Int J Eng 33(1):134–140. https://doi.org/10.5829/IJE.2020.33.01A.15

    Article  Google Scholar 

Download references

Funding

This paper is partially supported by the financial support provided by Iran National Science Foundation (INSF), Grant Number 99021946. The authors wish to thank Isfahan University of Medical Sciences for supporting this work, Grant Number 140136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Abolfazl Mostafavi.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poorirani, S., Taheri, S.l. & Mostafavi, S.A. Scaffolds: a biomaterial engineering in targeted drug delivery for osteoporosis. Osteoporos Int 34, 255–267 (2023). https://doi.org/10.1007/s00198-022-06543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06543-3

Keywords

Navigation