Skip to main content

Advertisement

Log in

Distal radius fractures and risk of incident neurocognitive disorders in older adults: a retrospective cohort study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

Distal radius fractures (DRF) are associated with increased risk of subsequent fractures and physical decline in older adults. This study aims to evaluate the risk cognitive decline following DRF and potential for timely screening and intervention.

Methods

A cohort of 1046 individuals 50–75 years of age with DRF were identified between 1995 and 2015 (81.5% female; mean age 62.5 [± 7.1] years). A control group (N = 1044) without history of DRF was matched by age, sex, and fracture date (i.e., index). The incidence of neurocognitive disorders (NCD) in relation to DRF/index was determined. Group comparisons were adjusted by age and comorbidity measured by the Elixhauser index.

Results

The DRF group had a greater incidence of NCD compared to the control group (11.3% vs. 8.2%) with a 56% greater relative risk (HR = 1.56, 95% Cl: 1.18, 2.07; p = 0.002) after adjusting for age and comorbidity. For every 10-year age increase, the DRF group was over three times more likely to develop a NCD (HR = 3.23, 95% Cl: 2.57, 4.04; p < 0.001).

Conclusion

DRF in adults ages 50 to 75 are associated with increased risk of developing neurocognitive disorders. DRF may represent a sentinel opportunity for cognitive screening and early intervention.

Summary

Distal radius fractures (DRF) have been associated with greater risk of future fractures and physical decline. This study reports that DRF are also associated with greater risk of developing neurocognitive disorders in older adults. Timely intervention may improve early recognition and long-term outcomes for older adults at risk of cognitive decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crowe CS, Massenburg BB, Morrison SD et al (2020) Global trends of hand and wrist trauma: a systematic analysis of fracture and digit amputation using the Global Burden of Disease 2017 Study. Inj Prev 26:i115–i124

    Article  PubMed  Google Scholar 

  2. Lauritzen JB, Schwarz P, McNair P, Lund B, Transbol I (1993) Radial and humeral fractures as predictors of subsequent hip, radial or humeral fractures in women, and their seasonal variation. Osteoporos Int 3:133–137

    Article  CAS  PubMed  Google Scholar 

  3. Cuddihy MT, Gabriel SE, Crowson CS, O’Fallon WM, Melton LJ 3rd (1999) Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporos Int 9:469–475

    Article  CAS  PubMed  Google Scholar 

  4. Johnson NA, Stirling ER, Divall P, Thompson JR, Ullah AS, Dias JJ (2017) Risk of hip fracture following a wrist fracture-a meta-analysis. Injury 48:399–405

    Article  PubMed  Google Scholar 

  5. Crandall CJ, Hovey KM, Cauley JA, Andrews CA, Curtis JR, Wactawski-Wende J, Wright NC, Li W, LeBoff MS (2015) Wrist fracture and risk of subsequent fracture: findings from the Women’s Health Initiative Study. J Bone Miner Res 30:2086–2095

    Article  PubMed  Google Scholar 

  6. Melton LJ 3rd, Amadio PC, Crowson CS, O’Fallon WM (1998) Long-term trends in the incidence of distal forearm fractures. Osteoporos Int 8:341–348

    Article  PubMed  Google Scholar 

  7. Majumdar SR, Lier DA, Rowe BH, Russell AS, McAlister FA, Maksymowych WP, Hanley DA, Morrish DW, Johnson JA (2011) Cost-effectiveness of a multifaceted intervention to improve quality of osteoporosis care after wrist fracture. Osteoporos Int 22:1799–1808

    Article  CAS  PubMed  Google Scholar 

  8. Edwards BJ, Song J, Dunlop DD, Fink HA, Cauley JA (2010) Functional decline after incident wrist fractures–study of osteoporotic fractures: prospective cohort study. BMJ 341:c3324

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vergara I, Vrotsou K, Orive M, Garcia-Gutierrez S, Gonzalez N, Las Hayas C, Quintana JM (2016) Wrist fractures and their impact in daily living functionality on elderly people: a prospective cohort study. BMC Geriatr 16:11

    Article  PubMed  PubMed Central  Google Scholar 

  10. Robinson LS, Sarkies M, Brown T, O’Brien L (2016) Direct, indirect and intangible costs of acute hand and wrist injuries: a systematic review. Injury 47:2614–2626

    Article  PubMed  Google Scholar 

  11. Curtis JR, Arora T, Matthews RS et al (2010) Is withholding osteoporosis medication after fracture sometimes rational? A comparison of the risk for second fracture versus death. J Am Med Dir Assoc 11:584–591

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rozental TD, Branas CC, Bozentka DJ, Beredjiklian PK (2002) Survival among elderly patients after fractures of the distal radius. J Hand Surg Am 27:948–952

    Article  PubMed  Google Scholar 

  13. Ostergaard PJ, Hall MJ, Rozental TD (2019) Considerations in the treatment of osteoporotic distal radius fractures in elderly patients. Curr Rev Musculoskelet Med 12:50–56

    Article  PubMed  PubMed Central  Google Scholar 

  14. MacIntyre NJ, Dewan N (2016) Epidemiology of distal radius fractures and factors predicting risk and prognosis. J Hand Ther 29:136–145

    Article  PubMed  Google Scholar 

  15. Taylor JP, McKeith IG, Burn DJ, Boeve BF, Weintraub D, Bamford C, Allan LM, Thomas AJ, O’Brien JT (2020) New evidence on the management of Lewy body dementia. Lancet Neurol 19:157–169

    Article  PubMed  Google Scholar 

  16. Pfeiffer RF (2016) Non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord 22(Suppl 1):S119-122

    Article  PubMed  Google Scholar 

  17. Atri A (2019) The Alzheimer’s disease clinical spectrum: diagnosis and management. Med Clin North Am 103:263–293

    Article  PubMed  Google Scholar 

  18. Rubenstein LZ, Josephson KR, Osterweil D (1996) Falls and fall prevention in the nursing home. Clin Geriatr Med 12:881–902

    Article  CAS  PubMed  Google Scholar 

  19. Graafmans WC, Ooms ME, Hofstee HM, Bezemer PD, Bouter LM, Lips P (1996) Falls in the elderly: a prospective study of risk factors and risk profiles. Am J Epidemiol 143:1129–1136

    Article  CAS  PubMed  Google Scholar 

  20. Livingston G, Huntley J, Sommerlad A et al (2020) Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 396:413–446

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fillit H, Green A (2021) Aducanumab and the FDA - where are we now? Nat Rev Neurol 17:129–130

    Article  PubMed  Google Scholar 

  22. Cummings J (2021) New approaches to symptomatic treatments for Alzheimer’s disease. Mol Neurodegener 16:2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cummings JL, Tong G, Ballard C (2019) Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J Alzheimers Dis 67:779–794

    Article  PubMed  PubMed Central  Google Scholar 

  24. St Sauver JL, Grossardt BR, Yawn BP, Melton LJ 3rd, Pankratz JJ, Brue SM, Rocca WA (2012) Data resource profile: the Rochester Epidemiology Project (REP) medical records-linkage system. Int J Epidemiol 41:1614–1624

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rocca WA, Yawn BP, St Sauver JL, Grossardt BR, Melton LJ 3rd (2012) History of the Rochester Epidemiology Project: half a century of medical records linkage in a US population. Mayo Clin Proc 87:1202–1213

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Johnell O, Kanis J (2005) Epidemiology of osteoporotic fractures. Osteoporos Int 16(Suppl 2):S3-7

    Article  PubMed  Google Scholar 

  28. Astrand J, Nilsson J, Thorngren KG (2012) Screening for osteoporosis reduced new fracture incidence by almost half: a 6-year follow-up of 592 fracture patients from an osteoporosis screening program. Acta Orthop 83:661–665

    Article  PubMed  PubMed Central  Google Scholar 

  29. World Health Organization (1978) International Classification of Diseases: 9th revision, clinical modification, ICD-9-CM Commission on Professional and Hospital Activities, Ann Arbor, MI

  30. Meena S, Sharma P, Sambharia AK, Dawar A (2014) Fractures of distal radius: an overview. J Family Med Prim Care 3:325–332

    Article  PubMed  PubMed Central  Google Scholar 

  31. World Health Organization (1993) The ICD-10 classification of mental and behavioural disorders. World Health Organization, Genève, Switzerland

    Google Scholar 

  32. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5 ed, DSM-5. American Psychiatric Association Publishing, Washington, DC

  33. Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV, Paulsen JS, Petersen RC (2014) Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol 10:634–642

    Article  PubMed  Google Scholar 

  34. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, Saunders LD, Beck CA, Feasby TE, Ghali WA (2005) Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care 43:1130–1139

    Article  PubMed  Google Scholar 

  35. Menendez ME, Neuhaus V, van Dijk CN, Ring D (2014) The Elixhauser comorbidity method outperforms the Charlson index in predicting inpatient death after orthopaedic surgery. Clin Orthop Relat Res 472:2878–2886

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sharabiani MTA, Aylin P, Bottle A (2012) Systematic review of comorbidity indices for administrative data. Med Care 50:1109–1118

    Article  PubMed  Google Scholar 

  37. Healthcare Cost and Utilization Project (2017) Clinical classifications software (CCS) for ICD-9-CM. Agency for Healthcare Research and Quality, Rockville, MD

  38. R Development Core Team (2019) A language and environment for statistical computing. R Foundation for Statistical Computing. www.R-project.org Accessed February 1, 2021

  39. Sousa S, Teixeira L, Paúl C (2020) Assessment of major neurocognitive disorders in primary health care: predictors of individual risk factors. Front Psychol 11:1413

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vogt MT, Cauley JA, Tomaino MM, Stone K, Williams JR, Herndon JH (2002) Distal radius fractures in older women: a 10-year follow-up study of descriptive characteristics and risk factors. The study of osteoporotic fractures. J Am Geriatr Soc 50:97–103

    Article  PubMed  Google Scholar 

  41. Cao Q, Tan CC, Xu W, Hu H, Cao XP, Dong Q, Tan L, Yu JT (2020) The prevalence of dementia: a systematic review and meta-analysis. J Alzheimers Dis 73:1157–1166

    Article  PubMed  Google Scholar 

  42. Yaffe K, Petersen RC, Lindquist K, Kramer J, Miller B (2006) Subtype of mild cognitive impairment and progression to dementia and death. Dement Geriatr Cogn Disord 22:312–319

    Article  PubMed  Google Scholar 

  43. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, Smith GE, Jack CR Jr (2009) Mild cognitive impairment: ten years later. Arch Neurol 66:1447–1455

    Article  PubMed  PubMed Central  Google Scholar 

  44. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  CAS  PubMed  Google Scholar 

  45. Mitchell AJ, Shiri-Feshki M (2008) Temporal trends in the long term risk of progression of mild cognitive impairment: a pooled analysis. J Neurol Neurosurg Psychiatry 79:1386–1391

    Article  CAS  PubMed  Google Scholar 

  46. Zhuang L, Yang Y, Gao J (2021) Cognitive assessment tools for mild cognitive impairment screening. J Neurol 268:1615–1622

    Article  PubMed  Google Scholar 

  47. Claveau JS, Presse N, Kergoat MJ, Villalpando JM (2018) The lost years: delay between the onset of cognitive symptoms and clinical assessment at a memory clinic. Can Geriatr J 21:152–156

    Article  PubMed  PubMed Central  Google Scholar 

  48. Koskas P, Pons-Peyneau C, Houenou-Quenum N, Romdhani M, Gasmi M, Galleron S, Drunat O (2018) Factors influencing time between onset of signs/symptoms and referral for dementia in elderly outpatients. Rev Neurol (Paris) 174:36–43

    Article  CAS  Google Scholar 

  49. Scharre DW, Chang SI, Nagaraja HN, Wheeler NC, Kataki M (2021) Self-administered gerocognitive examination: longitudinal cohort testing for the early detection of dementia conversion. Alzheimers Res Ther 13:192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fiest KM, Jetté N, Roberts JI et al (2016) The prevalence and incidence of dementia: a systematic review and meta-analysis. Canadian J Neurol Sci / J Canadien des Sciences Neurologiques 43:S3–S50

    Article  Google Scholar 

  51. Srikanth V, Sinclair AJ, Hill-Briggs F, Moran C, Biessels GJ (2020) Type 2 diabetes and cognitive dysfunction-towards effective management of both comorbidities. Lancet Diabetes Endocrinol 8:535–545

    Article  PubMed  Google Scholar 

  52. Diringer M (2017) Neurologic manifestations of major electrolyte abnormalities. Handb Clin Neurol 141:705–713

    Article  CAS  PubMed  Google Scholar 

  53. Schure MB, Borson S, Nguyen HQ, Trittschuh EH, Thielke SM, Pike KC, Adams SG, Fan VS (2016) Associations of cognition with physical functioning and health-related quality of life among COPD patients. Respir Med 114:46–52

    Article  PubMed  Google Scholar 

  54. Cleutjens FA, Janssen DJ, Ponds RW, Dijkstra JB, Wouters EF (2014) COgnitive-pulmonary disease. BioMed research international 2014:

  55. Kaur D, Bucholc M, Finn DP, Todd S, Wong-Lin K, McClean PL (2020) Multi-time-point data preparation robustly reveals MCI and dementia risk factors. Alzheimers Dement (Amst) 12:e12116

    Google Scholar 

  56. Thompson PW, Taylor J, Dawson A (2004) The annual incidence and seasonal variation of fractures of the distal radius in men and women over 25 years in Dorset, UK. Injury 35:462–466

    Article  PubMed  Google Scholar 

  57. Ek S, Rizzuto D, Fratiglioni L, Johnell K, Xu W, Welmer AK (2018) Risk profiles for injurious falls in people over 60: a population-based cohort study. J Gerontol A Biol Sci Med Sci 73:233–239

    Article  PubMed  Google Scholar 

  58. Wagner H, Melhus H, Gedeborg R, Pedersen NL, Michaelsson K (2009) Simply ask them about their balance–future fracture risk in a nationwide cohort study of twins. Am J Epidemiol 169:143–149

    Article  PubMed  Google Scholar 

  59. Noguchi T, Kubo Y, Hayashi T, Tomiyama N, Ochi A, Hayashi H (2021) Social isolation and self-reported cognitive decline among older adults in Japan: a longitudinal study in the COVID-19 pandemic. J Am Med Dir Assoc 22:1352-1356.e1352

    Article  PubMed  Google Scholar 

  60. Lara E, Caballero FF, Rico-Uribe LA, Olaya B, Haro JM, Ayuso-Mateos JL, Miret M (2019) Are loneliness and social isolation associated with cognitive decline? Int J Geriatr Psychiatry 34:1613–1622

    Article  PubMed  Google Scholar 

  61. Espeland MA, Lipska K, Miller ME et al (2017) Effects of physical activity intervention on physical and cognitive function in sedentary adults with and without diabetes. J Gerontol A Biol Sci Med Sci 72:861–866

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the following: The Mayo Clinic and Karolinska Institutet Collaborative Travel Award, Mayo Clinic Center for Clinical and Translational Science (CCaTS) Grant UL1TR002377, Rochester Epidemiology Project Grant PO1 AG04875-31, and The National Institute on Aging Grant R01 AG034676. This study was sponsored by a Mayo Clinic Department of Psychiatry and Psychology small grant award and a Mayo Clinic-Karolinska Institutet travel award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Baruth.

Ethics declarations

The authors are willing to allow the journal to review their data if requested. The sponsors had no direct role in the design, methods, analysis, or preparation of this paper.

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baruth, J.M., Lapid, M.I., Clarke, B. et al. Distal radius fractures and risk of incident neurocognitive disorders in older adults: a retrospective cohort study. Osteoporos Int 33, 2307–2314 (2022). https://doi.org/10.1007/s00198-022-06497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06497-6

Keywords

Navigation