Skip to main content

Proposing a clinical algorithm for better diagnosis of hypophosphatasia in resource-limiting situations

Abstract

Mini abstract

Early diagnosis of hypophosphatasia (HPP) is challenging. Here, we propose to broaden the diagnostic criteria of HPP by reviewing published data on BMD and fractures in HPP patients. Non-osteoporotic fractures and higher than normal lumbar BMD were recurrent in HPP patients and could be included as diagnostic criteria.

HPP is a genetic disorder caused by autosomal recessive or dominant loss-of-function mutations in the ALPL gene that encodes for tissue-nonspecific alkaline phosphatase (TNSALP). Expressive genetic heterogeneity and varying severity of TNSALP deficiency lead to a wide-ranging presentation of skeletal diseases at different ages that coupled with HPP’s rarity and limitation of biochemical and mutational studies present serious hurdles to early diagnosis and management of HPP. To widen the scope of HPP diagnosis, we assessed the possibility of areal bone mineral density (BMD) as an additional clinical feature of this disease. PubMed, Web of Science, and ScienceDirect were searched with the following keywords: (“Hypophosphatasia OR HPP”) AND (“Bone Mineral Density OR BMD”) AND “Human”. Studies and case reports of subjects with age ≥ 18 years and having BMD data were included. We pooled data from 25 publications comprising 356 subjects (90 males, 266 females). Only four studies had a control group. Biochemical hallmarks, pyridoxal 5′-phosphate (PLP) and phosphoethanolamine (PEA), were reported in fifteen and six studies, respectively. Twenty studies reported genetic data, nineteen studies reported non-vertebral fractures, all studies reported lumbar spine (LS) BMD, and nineteen reported non-vertebral BMD. Higher than normal and normal BMD at LS were reported in three and two studies, respectively. There was marked heterogeneity in BMD at the non-vertebral sites. Higher than normal or normal LS BMD in an adult with minimal or insufficient fractures, pseudofractures, non-healing fractures, fragility fractures, and stress fractures may be included in the diagnostic protocol of HPP. However, genetic testing is recommended for a definitive diagnosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Azpiazu D, Gonzalo S, Villa-Bellosta R (2019) Tissue non-specific alkaline phosphatase and vascular calcification: a potential therapeutic target. Curr Cardiol Rev 15:91–95. https://doi.org/10.2174/1573403X14666181031141226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weiss MJ, Cole DEC, Ray K et al (1988) A missense mutation in the human liver/bone/kidney alkaline phosphatase gene causing a lethal form of hypophosphatasia. Proc Natl Acad Sci U S A 85:7666–7669. https://doi.org/10.1073/PNAS.85.20.7666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Table of mutations - ALPL. https://alplmutationdatabase.jku.at/table/. Accessed 25 Nov 2021.

  4. Mornet E, Taillandier A, Domingues C et al (2021) Hypophosphatasia: a genetic-based nosology and new insights in genotype-phenotype correlation. Eur J Hum Genet 29:289–299. https://doi.org/10.1038/S41431-020-00732-6

    Article  CAS  PubMed  Google Scholar 

  5. Whyte MP, Zhang F, Wenkert D et al (2015) Hypophosphatasia: validation and expansion of the clinical nosology for children from 25 years experience with 173 pediatric patients. Bone 75:229–239. https://doi.org/10.1016/J.BONE.2015.02.022

    Article  CAS  PubMed  Google Scholar 

  6. Wenkert D, McAlister WH, Coburn SP et al (2011) Hypophosphatasia: nonlethal disease despite skeletal presentation in utero (17 new cases and literature review). J Bone Miner Res 26:2389–2398. https://doi.org/10.1002/JBMR.454

    Article  CAS  PubMed  Google Scholar 

  7. Anderson HC (2003) Matrix vesicles and calcification. Curr Rheumatol Rep 5:222–226. https://doi.org/10.1007/S11926-003-0071-Z

    Article  PubMed  Google Scholar 

  8. Addison WN, Azari F, Sørensen ES et al (2007) Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J Biol Chem 282:15872–15883. https://doi.org/10.1074/JBC.M701116200

    Article  CAS  PubMed  Google Scholar 

  9. Harmey D, Hessle L, Narisawa S et al (2004) Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol 164:1199–1209. https://doi.org/10.1016/S0002-9440(10)63208-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Terkeltaub RA (2001) Inorganic pyrophosphate generation and disposition in pathophysiology. Am J Physiol Cell Physiol 281:C1–C11. https://doi.org/10.1152/AJPCELL.2001.281.1.C1

  11. Bowen RAR, Hortin GL, Csako G et al (2010) Impact of blood collection devices on clinical chemistry assays. Clin Biochem 43:4–25. https://doi.org/10.1016/J.CLINBIOCHEM.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  12. Whyte MP, Landt M, Ryan LM et al (1995) Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5’-phosphate. Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest 95:1440–1445. https://doi.org/10.1172/JCI117814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sivaprasad M, Shalini T, Reddy PY et al (2019) Prevalence of vitamin deficiencies in an apparently healthy urban adult population: assessed by subclinical status and dietary intakes. Nutrition 63–64:106–113. https://doi.org/10.1016/J.NUT.2019.01.017

    Article  PubMed  Google Scholar 

  14. Whyte MP (2016) Hypophosphatasia - aetiology, nosology, pathogenesis, diagnosis and treatment. Nat Rev Endocrinol 12:233–246. https://doi.org/10.1038/NRENDO.2016.14

    Article  CAS  PubMed  Google Scholar 

  15. Michigami T, Ohata Y, Fujiwara M et al (2020) Clinical practice guidelines for hypophosphatasia. Clin Pediatr Endocrinol case reports Clin Investig Off J Japanese Soc Pediatr Endocrinol 29:9–24. https://doi.org/10.1297/CPE.29.9

    Article  Google Scholar 

  16. Offiah AC, Vockley J, Munns CF, Murotsuki J (2019) Differential diagnosis of perinatal hypophosphatasia: radiologic perspectives. Pediatr Radiol 49:3–22. https://doi.org/10.1007/s00247-018-4239-0

    Article  PubMed  Google Scholar 

  17. Berkseth KE, Tebben PJ, Drake MT et al (2013) Clinical spectrum of hypophosphatasia diagnosed in adults. Bone 54:21–27. https://doi.org/10.1016/J.BONE.2013.01.024

    Article  CAS  PubMed  Google Scholar 

  18. Conti F, Ciullini L, Pugliese G (2017) Hypophosphatasia: clinical manifestation and burden of disease in adult patients. Clin Cases Miner Bone Metab 14:230. https://doi.org/10.11138/CCMBM/2017.14.1.230

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bangura A, Wright L, Shuler T (2020) Hypophosphatasia: current literature for pathophysiology, clinical manifestations, diagnosis, and treatment. Cureus 12:e8594. https://doi.org/10.7759/CUREUS.8594

  20. Michigami T, Ohata Y, Fujiwara M et al (2020) Clinical practice guidelines for hypophosphatasia*. Clin Pediatr Endocrinol 29:9. https://doi.org/10.1297/CPE.29.9

    Article  PubMed  PubMed Central  Google Scholar 

  21. Genest F, Claußen L, Rak D, Seefried L (2021) Bone mineral density and fracture risk in adult patients with hypophosphatasia. Osteoporos Int 32:377–385. https://doi.org/10.1007/S00198-020-05612-9

    Article  CAS  PubMed  Google Scholar 

  22. Xu L, Pang Q, Jiang Y et al (2018) Four novel mutations in the ALPL gene in Chinese patients with odonto, childhood, and adult hypophosphatasia. Biosci Rep 38:BSR20171377. https://doi.org/10.1042/BSR20171377

  23. Zhang H, Ke YH, Wang C et al (2012) Identification of the mutations in the tissue-nonspecific alkaline phosphatase gene in two Chinese families with hypophosphatasia. Arch Med Res 43:21–30. https://doi.org/10.1016/J.ARCMED.2012.01.004

    Article  PubMed  Google Scholar 

  24. Fukushima K, Kawai-Kowase K, Yonemoto Y et al (2019) Adult hypophosphatasia with compound heterozygous p. Phe327Leu missense and c.1559delT frameshift mutations in tissue-nonspecific alkaline phosphatase gene: a case report. J Med Case Rep 13:1–6. https://doi.org/10.1186/S13256-019-2045-4

    Article  Google Scholar 

  25. Iida KI, Fukushi JI, Fujiwara T et al (2012) Adult hypophosphatasia with painful periarticular calcification treated with surgical resection. J Bone Miner Metab 30:722–725. https://doi.org/10.1007/s00774-011-0338-9

    Article  PubMed  Google Scholar 

  26. Freitas TQ, Franco AS, Pereira RMR (2018) Improvement of bone microarchitecture parameters after 12 months of treatment with asfotase alfa in adult patient with hypophosphatasia: Case report. Medicine (Baltimore) 97:e13210. https://doi.org/10.1097/MD.0000000000013210

  27. Martins L, dos Santos EL, de Almeida AB et al (2020) A novel de novo heterozygous ALPL nonsense mutation associated with adult hypophosphatasia. Osteoporos Int 31:2251–2257. https://doi.org/10.1007/s00198-020-05490-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kishnani PS, Rockman-Greenberg C, Rauch F et al (2019) Five-year efficacy and safety of asfotase alfa therapy for adults and adolescents with hypophosphatasia. Bone 121:149–162. https://doi.org/10.1016/j.bone.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  29. Desborough R, Nicklin P, Gossiel F et al (2021) Clinical and biochemical characteristics of adults with hypophosphatasia attending a metabolic bone clinic. Bone 144:115795. https://doi.org/10.1016/j.bone.2020.115795

  30. López-Delgado L, Riancho-Zarrabeitia L, García-Unzueta MT et al (2018) Abnormal bone turnover in individuals with low serum alkaline phosphatase. Osteoporos Int 29:2147–2150. https://doi.org/10.1007/s00198-018-4571-0

    Article  CAS  PubMed  Google Scholar 

  31. Seefried L, Baumann J, Hemsley S et al (2017) Efficacy of anti-sclerostin monoclonal antibody BPS804 in adult patients with hypophosphatasia. J Clin Invest 127:2148–2158. https://doi.org/10.1172/JCI83731

    Article  PubMed  PubMed Central  Google Scholar 

  32. Barvencik F, Timo Beil F, Gebauer M et al (2011) Skeletal mineralization defects in adult hypophosphatasia—a clinical and histological analysis. Osteoporos Int 22:2667–2675. https://doi.org/10.1007/S00198-011-1528-Y

    Article  CAS  PubMed  Google Scholar 

  33. Genest F, Seefried L (2018) Subtrochanteric and diaphyseal femoral fractures in hypophosphatasia-not atypical at all. Osteoporos Int 29:1815–1825. https://doi.org/10.1007/S00198-018-4552-3

    Article  CAS  PubMed  Google Scholar 

  34. Schmidt T, Mussawy H, Rolvien T et al (2017) Clinical, radiographic and biochemical characteristics of adult hypophosphatasia. Osteoporos Int 28:2653–2662. https://doi.org/10.1007/S00198-017-4087-Z

    Article  CAS  PubMed  Google Scholar 

  35. Jandl NM, Schmidt T, Rolvien T et al (2021) Genotype–phenotype associations in 72 adults with suspected ALPL-associated hypophosphatasia. Calcif Tissue Int 108:288–301. https://doi.org/10.1007/s00223-020-00771-7

    Article  CAS  PubMed  Google Scholar 

  36. Wüster C, Ziegler R (1992) Reduced bone mineral density and low parathyroid hormone levels in patients with the adult form of hypophosphatasia. Clin Investig 70:560–565. https://doi.org/10.1007/BF00184792

    Article  PubMed  Google Scholar 

  37. Sutton RAL, Mumm S, Coburn SP et al (2012) “Atypical femoral fractures” during bisphosphonate exposure in adult hypophosphatasia. J Bone Miner Res 27:987–994. https://doi.org/10.1002/JBMR.1565

    Article  CAS  PubMed  Google Scholar 

  38. Whyte MP, Mumm S, Deal C (2007) Adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab 92:1203–1208. https://doi.org/10.1210/JC.2006-1902

    Article  CAS  PubMed  Google Scholar 

  39. Khandwala HM, Mumm S, Whyte MP (2006) Low serum alkaline phosphatase activity and pathologic fracture: case report and brief review of hypophosphatasia diagnosed in adulthood. Endocr Pract 12:676–681. https://doi.org/10.4158/EP.12.6.676

    Article  PubMed  Google Scholar 

  40. Rolvien T, Schmidt T, Schmidt FN et al (2019) Recovery of bone mineralization and quality during asfotase alfa treatment in an adult patient with infantile-onset hypophosphatasia. Bone 127:67–74. https://doi.org/10.1016/J.BONE.2019.05.036

    Article  PubMed  Google Scholar 

  41. Camacho PM, Painter S, Kadanoff R (2008) Treatment of adult hypophosphatasia with teriparatide. Endocr Pract 14:204–208. https://doi.org/10.4158/EP.14.2.204

    Article  PubMed  Google Scholar 

  42. Camacho PM, Mazhari AM, Wilczynski C et al (2016) Adult hypophosphatasia treated with teriparatide: report of 2 patients and review of the literature. Endocr Pract 22:941–950. https://doi.org/10.4158/EP15890.OR

    Article  PubMed  Google Scholar 

  43. Rassie K, Dray M, Michigami T, Cundy T (2019) Bisphosphonate use and fractures in adults with hypophosphatasia. JBMR Plus 3:e10223. https://doi.org/10.1002/jbm4.10223

  44. Hepp N, Frederiksen AL, Dunø M et al (2019) Multiple fractures and impaired bone fracture healing in a patient with pycnodysostosis and hypophosphatasia. Calcif Tissue Int 105:681–686. https://doi.org/10.1007/S00223-019-00605-1

    Article  CAS  PubMed  Google Scholar 

  45. Doshi KB, Hamrahian AH, Licata AA (2009) Teriparatide treatment in adult hypophosphatasia in a patient exposed to bisphosphonate: a case report. In: Clin. Cases Miner. Bone Metab. /pmc/articles/PMC2811362/. Accessed 26 Nov 2021.

  46. Whyte MP, Mumm S, Deal C (2007) Clinical case seminar: adult hypophosphatasia treated with teriparatide. J Clin Endocrinol Metab 92:1203–1208. https://doi.org/10.1210/jc.2006-1902

    Article  CAS  PubMed  Google Scholar 

  47. Korman JD, Volenberg I, Balko J et al (2008) Screening for Wilson disease in acute liver failure: a comparison of currently available diagnostic tests. Hepatology 48:1167–1174. https://doi.org/10.1002/hep.22446

    Article  CAS  PubMed  Google Scholar 

  48. Heaton FW (1965) Effect of magnesium deficiency on plasma alkaline phosphatase activity. Nature 207:1292–1293. https://doi.org/10.1038/2071292B0

    Article  CAS  PubMed  Google Scholar 

  49. Weismann K, Hoyer H (1985) Serum alkaline phosphatase and serum zinc levels in the diagnosis and exclusion of zinc deficiency in man. Am J Clin Nutr 41:1214–1219. https://doi.org/10.1093/AJCN/41.6.1214

    Article  CAS  PubMed  Google Scholar 

  50. Lum G (1995) Significance of low serum alkaline phosphatase activity in a predominantly adult male population. Clin Chem 41:515–8

    Article  CAS  PubMed  Google Scholar 

  51. Huang M-J, Liaw Y-F (1995) Clinical associations between thyroid and liver diseases. J Gastroenterol Hepatol 10:344–350. https://doi.org/10.1111/j.1440-1746.1995.tb01106.x

    Article  CAS  PubMed  Google Scholar 

  52. Mancini T, Doga M, Mazziotti G, Giustina A (2004) Cushing’s syndrome and bone. Pituitary 7:249–252. https://doi.org/10.1007/s11102-005-1051-2

    Article  PubMed  Google Scholar 

  53. Högler W, Langman C, Gomes Da Silva H, et al. (2019) Diagnostic delay is common among patients with hypophosphatasia: initial findings from a longitudinal, prospective, global registry. BMC Musculoskelet Disord 20.https://doi.org/10.1186/S12891-019-2420-8

  54. Mori M, DeArmey SL, Weber TJ, Kishnani PS (2016) Case series: Odontohypophosphatasia or missed diagnosis of childhood/adult-onset hypophosphatasia? - Call for a long-term follow-up of premature loss of primary teeth. Bone reports 5:228–232. https://doi.org/10.1016/J.BONR.2016.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gregson CL, Hardcastle SA, Cooper C, Tobias JH (2013) Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management. Rheumatology (Oxford) 52:968–985. https://doi.org/10.1093/RHEUMATOLOGY/KET007

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Council of Scientific and Industrial Research, Government of India, MLP-2035. CSIR-CDRI Communication Number of this manuscript is: 10420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naibedya Chattopadhyay.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, S., Mehta, P., Rajender, S. et al. Proposing a clinical algorithm for better diagnosis of hypophosphatasia in resource-limiting situations. Osteoporos Int 33, 2479–2493 (2022). https://doi.org/10.1007/s00198-022-06480-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06480-1

Keywords