Skip to main content

Advertisement

Log in

Major osteoporosis fracture prediction in type 2 diabetes: a derivation and comparison study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The widely recommended fracture prediction tool FRAX was developed based on and for the general population. Although several adjusted FRAX methods were suggested for type 2 diabetes (T2DM), they still need to be evaluated in T2DM cohort.

Introduction

This study was undertaken to develop a prediction model for Chinese diabetes fracture risk (CDFR) and compare its performance with those of FRAX.

Methods

In this retrospective cohort study, 1730 patients with T2DM were enrolled from 2009.08 to 2013.07. Major osteoporotic fractures (MOFs) during follow-up were collected from Electronic Health Records (EHRs) and telephone interviews. Multivariate Cox regression with backward stepwise selection was used to fit the model. The performances of the CDFR model, FRAX, and adjusted FRAX were compared in the aspects of discrimination and calibration.

Results

6.3% of participants experienced MOF during a median follow-up of 10 years. The final model (CDFR) included 8 predictors: age, gender, previous fracture, insulin use, diabetic peripheral neuropathy (DPN), total cholesterol, triglycerides, and apolipoprotein A. This model had a C statistic of 0.803 (95%CI 0.761–0.844) and calibration χ2 of 4.63 (p = 0.86). The unadjusted FRAX underestimated the MOF risk (calibration χ2 134.5, p < 0.001; observed/predicted ratio 2.62, 95%CI 2.17–3.08), and there was still significant underestimation after diabetes adjustments. Comparing FRAX, the CDFR had a higher AUC, lower calibration χ2, and better reclassification of MOF.

Conclusion

The CDFR model has good performance in 10-year MOF risk prediction in T2DM, especially in patients with insulin use or DPN. Future work is needed to validate our model in external cohort(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Some or all data sets generated during and/or analyzed during the present study are not publicly available due to privacy or ethical restrictions but are available from the corresponding author on reasonable request.

References

  1. Xu Y, Wang L, He J et al (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310:948–959. https://doi.org/10.1001/jama.2013.168118

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Yu W, Yin X et al (2021) Prevalence of Osteoporosis and Fracture in China: The China Osteoporosis Prevalence Study. JAMA Netw Open 4:e2121106. https://doi.org/10.1001/jamanetworkopen.2021.21106

    Article  PubMed  PubMed Central  Google Scholar 

  3. Compston J (2018) Type 2 diabetes mellitus and bone. J Intern Med 283:140–153. https://doi.org/10.1111/joim.12725

    Article  CAS  PubMed  Google Scholar 

  4. Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S (2014) In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res 29:787–795. https://doi.org/10.1002/jbmr.2106

    Article  PubMed  Google Scholar 

  5. Tao B, Liu JM, Zhao HY, Sun LH, Wang WQ, Li XY, Ning G (2008) Differences between measurements of bone mineral densities by quantitative ultrasound and dual-energy X-ray absorptiometry in type 2 diabetic postmenopausal women. J Clin Endocrinol Metab 93:1670–1675. https://doi.org/10.1210/jc.2007-1760

    Article  CAS  PubMed  Google Scholar 

  6. An Y, Liu S, Wang W, Dong H, Zhao W, Ke J, Zhao D (2021) Low serum levels of bone turnover markers are associated with the presence and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. J Diabetes 13:111–123. https://doi.org/10.1111/1753-0407.13089

    Article  CAS  PubMed  Google Scholar 

  7. Carnevale V, Romagnoli E, D’Erasmo L, D’Erasmo E (2014) Bone damage in type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 24:1151–1157. https://doi.org/10.1016/j.numecd.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  8. Cooney MT, Dudina AL, Graham IM (2009) Value and limitations of existing scores for the assessment of cardiovascular risk: a review for clinicians. J Am Coll Cardiol 54:1209–1227. https://doi.org/10.1016/j.jacc.2009.07.020

    Article  PubMed  Google Scholar 

  9. Kanis JA, Harvey NC, Johansson H, Odén A, McCloskey EV, Leslie WD (2017) Overview of Fracture Prediction Tools. J Clin Densitom 20:444–450. https://doi.org/10.1016/j.jocd.2017.06.013

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kanis JA, Cooper C, Rizzoli R, Reginster JY (2019) Executive summary of the European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Calcif Tissue Int 104:235–238. https://doi.org/10.1007/s00223-018-00512-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang N, Xia W (2018) Assessment of bone quality in patients with diabetes mellitus. Osteoporos Int 29:1721–1736. https://doi.org/10.1007/s00198-018-4532-7

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz AV, Vittinghoff E, Bauer DC et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192. https://doi.org/10.1001/jama.2011.715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Leslie WD, Johansson H, McCloskey EV, Harvey NC, Kanis JA, Hans D (2018) Comparison of Methods for Improving Fracture Risk Assessment in Diabetes: The Manitoba BMD Registry. J Bone Miner Res 33:1923–1930. https://doi.org/10.1002/jbmr.3538

    Article  PubMed  Google Scholar 

  14. Davis WA, Hamilton EJ, Bruce DG, Davis TME (2019) Development and Validation of a Simple Hip Fracture Risk Prediction Tool for Type 2 Diabetes: The Fremantle Diabetes Study Phase I. Diabetes Care 42:102–109. https://doi.org/10.2337/dc18-1486

    Article  PubMed  Google Scholar 

  15. Kanazawa I, Tanaka KI, Takeo A, Notsu M, Miyake H, Sugimoto T (2019) A scoring assessment tool for the risk of vertebral fractures in patients with type 2 diabetes mellitus. Bone 122:38–44. https://doi.org/10.1016/j.bone.2019.02.003

    Article  PubMed  Google Scholar 

  16. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27:301–308. https://doi.org/10.1002/jbmr.556

    Article  PubMed  Google Scholar 

  17. Palui R, Pramanik S, Mondal S, Ray S (2021) Critical review of bone health, fracture risk and management of bone fragility in diabetes mellitus. World J Diabetes 12:706–729. https://doi.org/10.4239/wjd.v12.i6.706

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tesfaye S, Boulton AJ, Dyck PJ et al (2010) Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care 33:2285–2293. https://doi.org/10.2337/dc10-1303

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu JM, Zhu DL, Mu YM, Xia WB (2019) Management of fracture risk in patients with diabetes-Chinese Expert Consensus. J Diabetes 11:906–919. https://doi.org/10.1111/1753-0407.12962

    Article  PubMed  Google Scholar 

  20. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hayashi K, Eguchi S (2019) The power-integrated discriminant improvement: An accurate measure of the incremental predictive value of additional biomarkers. Stat Med 38:2589–2604. https://doi.org/10.1002/sim.8135

    Article  PubMed  Google Scholar 

  22. Uno H, Cai T, Pencina MJ, D’Agostino RB, Wei LJ (2011) On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat Med 30:1105–1117. https://doi.org/10.1002/sim.4154

    Article  PubMed  PubMed Central  Google Scholar 

  23. Demler OV, Paynter NP, Cook NR (2015) Tests of calibration and goodness-of-fit in the survival setting. Stat Med 34:1659–1680. https://doi.org/10.1002/sim.6428

    Article  PubMed  PubMed Central  Google Scholar 

  24. Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans MJ, Vergouwe Y, Habbema JD (2001) Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol 54:774–781. https://doi.org/10.1016/s0895-4356(01)00341-9

    Article  CAS  PubMed  Google Scholar 

  25. Leslie WD, Morin S, Lix LM, Johansson H, Oden A, McCloskey E, Kanis JA (2012) Fracture risk assessment without bone density measurement in routine clinical practice. Osteoporos Int 23:75–85. https://doi.org/10.1007/s00198-011-1747-2

    Article  CAS  PubMed  Google Scholar 

  26. Jewell ES, Maile MD, Engoren M, Elliott M (2016) Net Reclassification Improvement. Anesth Analg 122:818–824. https://doi.org/10.1213/ane.0000000000001141

    Article  PubMed  Google Scholar 

  27. Leslie WD, Lix LM, Wu X (2013) Competing mortality and fracture risk assessment. Osteoporos Int 24:681–688. https://doi.org/10.1007/s00198-012-2051-5

    Article  CAS  PubMed  Google Scholar 

  28. Leslie WD, Lix LM (2011) Effects of FRAX(®) model calibration on intervention rates: a simulation study. J Clin Densitom 14:272–278. https://doi.org/10.1016/j.jocd.2011.03.007

    Article  PubMed  Google Scholar 

  29. Kanis JA, Oden A, Johansson H, Borgström F, Ström O, McCloskey E (2009) FRAX and its applications to clinical practice. Bone 44:734–743. https://doi.org/10.1016/j.bone.2009.01.373

    Article  PubMed  Google Scholar 

  30. Oei L, Zillikens MC, Dehghan A et al (2013) High bone mineral density and fracture risk in type 2 diabetes as skeletal complications of inadequate glucose control: the Rotterdam Study. Diabetes Care 36:1619–1628. https://doi.org/10.2337/dc12-1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Conway BN, Long DM, Figaro MK, May ME (2016) Glycemic control and fracture risk in elderly patients with diabetes. Diabetes Res Clin Pract 115:47–53. https://doi.org/10.1016/j.diabres.2016.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang B, Wang Z, Poundarik AA et al (2021) Unmasking Fracture Risk in Type 2 Diabetes: The Association of Longitudinal Glycemic Hemoglobin Level and Medications. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgab882

    Article  PubMed  PubMed Central  Google Scholar 

  33. Losada-Grande E, Hawley S, Soldevila B et al (2017) Insulin use and Excess Fracture Risk in Patients with Type 2 Diabetes: A Propensity-Matched cohort analysis. Sci Rep 7:3781. https://doi.org/10.1038/s41598-017-03748-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ntouva A, Toulis KA, Keerthy D et al (2019) Hypoglycaemia is associated with increased risk of fractures in patients with type 2 diabetes mellitus: a cohort study. Eur J Endocrinol 180:51–58. https://doi.org/10.1530/eje-18-0458

    Article  CAS  PubMed  Google Scholar 

  35. Lee RH, Sloane R, Pieper C et al (2018) Clinical Fractures Among Older Men With Diabetes Are Mediated by Diabetic Complications. J Clin Endocrinol Metab 103:281–287. https://doi.org/10.1210/jc.2017-01593

    Article  PubMed  Google Scholar 

  36. Majumdar SR, Leslie WD, Lix LM et al (2016) Longer Duration of Diabetes Strongly Impacts Fracture Risk Assessment: The Manitoba BMD Cohort. J Clin Endocrinol Metab 101:4489–4496. https://doi.org/10.1210/jc.2016-2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hidayat K, Fang QL, Shi BM, Qin LQ (2021) Influence of glycemic control and hypoglycemia on the risk of fracture in patients with diabetes mellitus: a systematic review and meta-analysis of observational studies. Osteoporos Int 32:1693–1704. https://doi.org/10.1007/s00198-021-05934-2

    Article  CAS  PubMed  Google Scholar 

  38. Walsh JS, Vilaca T (2017) Obesity, Type 2 Diabetes and Bone in Adults. Calcif Tissue Int 100:528–535. https://doi.org/10.1007/s00223-016-0229-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Radak TL (2004) Caloric restriction and calcium’s effect on bone metabolism and body composition in overweight and obese premenopausal women. Nutr Rev 62:468–481. https://doi.org/10.1111/j.1753-4887.2004.tb00019.x

    Article  PubMed  Google Scholar 

  40. Kim H, Oh B, Park-Min KH (2021) Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism. Cells 10:89. https://doi.org/10.3390/cells10010089

  41. Ahmed LA, Schirmer H, Berntsen GK, Fønnebø V, Joakimsen RM (2006) Features of the metabolic syndrome and the risk of non-vertebral fractures: the Tromsø study. Osteoporos Int 17:426–432. https://doi.org/10.1007/s00198-005-0003-z

    Article  CAS  PubMed  Google Scholar 

  42. Chang PY, Gold EB, Cauley JA et al (2016) Triglyceride Levels and Fracture Risk in Midlife Women: Study of Women’s Health Across the Nation (SWAN). J Clin Endocrinol Metab 101:3297–3305. https://doi.org/10.1210/jc.2016-1366

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kanis JA, McCloskey E, Johansson H, Oden A, Leslie WD (2012) FRAX(®) with and without bone mineral density. Calcif Tissue Int 90:1–13. https://doi.org/10.1007/s00223-011-9544-7

    Article  CAS  PubMed  Google Scholar 

  44. Chen FP, Kuo SF, Lin YC, Fan CM, Chen JF (2019) Status of bone strength and factors associated with vertebral fracture in postmenopausal women with type 2 diabetes. Menopause 26:182–188. https://doi.org/10.1097/gme.0000000000001185

    Article  PubMed  Google Scholar 

  45. Osório J (2011) BMD and fracture risk in T2DM-clarifying a paradox. Nat Rev Endocrinol 7:376. https://doi.org/10.1038/nrendo.2011.89

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank all the study participants and Ruijin Hospital Computer Center.

Funding

This work was supported by diabetes mellitus research fund program from Shanghai Medical and Health development foundation (DMRFP_II_06 from SHMHDF) and the National Natural Science Foundation of China (No. 82070880).

Author information

Authors and Affiliations

Authors

Contributions

W.W., B.T., and J.L. contributed to the study conception and design. X.K. and Z.Z. analyzed data and wrote the first manuscript. Material preparation and data collection were performed by X.K., D.Z., and R.X. All authors were involving in revising the manuscript and had final approval of the submitted and published versions. B.T. and J.L. were the guarantors of this work and, as such, had access to all data in this study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding authors

Correspondence to Wei-qing Wang, Jian-min Liu or Bei Tao.

Ethics declarations

Ethics declarations

This study has been approved by the Ethics Committee of Ruijin Hospital affiliated with Shanghai Jiao-tong University School of Medicine and has been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Consent to participate

For this type of study, formal consent is not required.

Conflicts of interest

None

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2071 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Xk., Zhao, Zy., Zhang, D. et al. Major osteoporosis fracture prediction in type 2 diabetes: a derivation and comparison study. Osteoporos Int 33, 1957–1967 (2022). https://doi.org/10.1007/s00198-022-06425-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06425-8

Keywords

Navigation