Skip to main content

Advertisement

Log in

Associations between bone mineral density and subclinical peripheral arterial disease in elderly men with type 2 diabetes mellitus

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The association between peripheral arterial disease (PAD) and osteoporosis in elderly men with type 2 diabetes mellitus (T2DM) remains unclear. We demonstrated the association between subclinical PAD and decreased total hip bone mineral density (BMD) in men aged ≥ 55 years with T2DM, providing clinical clues for the early detection of decreased bone density in total hip.

Purpose

To investigate the association between subclinical peripheral arterial disease (PAD) and bone mineral density (BMD) at total hip, femoral neck, and lumbar spine (L1–4) in elderly men with type 2 diabetes mellitus (T2DM).

Methods

We identified 2,466 patients with confirmed diabetes in this retrospective cross-sectional study. A total of 272 men aged ≥ 55 years with T2DM (50 with subclinical PAD and 222 without PAD) were analyzed. Partial correlation analysis was conducted to explore the associations between ankle-brachial index (ABI) and BMD. Multivariate logistic regression analysis was performed to analyze the contributor for low bone density (T-score <  − 1.0).

Results

Patients with T2DM and subclinical PAD (ABI ≤ 0.9) had significantly lower total hip BMD and T-score (BMD, 0.87 ± 0.14 vs. 0.92 ± 0.15 g/cm2, P = 0.014; T-score, -1.30 [-1.70 to -0.45] vs. -0.80 [-1.40 to 0.00], P = 0.009) than those in the control group. The partial correlation analyses indicated that ABI significantly correlated with the total hip T-score (adjusted r = 0.166, P = 0.009). The logistic regression analysis indicated that subclinical PAD was an independent risk factor for the risk of decreased bone density in total hip (adjusted odds ratio [95% CI]: 8.933 [1.075–74.222], P = 0.043).

Conclusion

Subclinical PAD (ABI ≤ 0.9) could be used as a risk factor for decreased total hip BMD in men aged ≥ 55 years with T2DM, which provides clinical clues for the early detection of low bone density in total hip in such populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sambrook P, Cooper C (2006) Osteoporosis Lancet 367:2010–2018. https://doi.org/10.1016/S0140-6736(06)68891-0

    Article  CAS  PubMed  Google Scholar 

  2. (2022) Clinical guidelines for prevention and treatment of type 2 diabetes mellitus in the elderly in China (2022 edition). Chinese Journal of Internal Medicine 61: 12-50https://doi.org/10.3760/cma.j.cn112138-20211027-00751

  3. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767. https://doi.org/10.1016/S0140-6736(02)08657-9

    Article  PubMed  Google Scholar 

  4. Haentjens P, Magaziner J, Colon-Emeric CS, Vanderschueren D, Milisen K, Velkeniers B et al (2010) Meta-analysis: excess mortality after hip fracture among older women and men. Ann Intern Med 152:380–390. https://doi.org/10.7326/0003-4819-152-6-201003160-00008

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feldstein AC, Nichols G, Orwoll E, Elmer PJ, Smith DH, Herson M et al (2005) The near absence of osteoporosis treatment in older men with fractures. Osteoporos Int 16:953–962. https://doi.org/10.1007/s00198-005-1950-0

    Article  PubMed  Google Scholar 

  6. Research C S o O a B M (2020) Guideline for diagnosis and treatment of osteoprosis in men. CHIN J OSTEOPOROS BONE MINER RES 13: 381-395.https://doi.org/10.3969/j.issn.1674-2591.2020.05.001

  7. Walsh JS, Eastell R (2013) Osteoporosis in men. Nat Rev Endocrinol 9:637–645. https://doi.org/10.1038/nrendo.2013.171

    Article  CAS  PubMed  Google Scholar 

  8. Research t C S o O a B M (2019) 中国骨质疏松症流行病学调查及 “健康骨骼”专项行动结果发布. CHIN J OSTEOPOROSIS & BONE MINER RES 12: 317-318https://doi.org/10.3969/j.issn.1674-2591.2019.04.001

  9. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL et al (2017) Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol 13:208–219. https://doi.org/10.1038/nrendo.2016.153

    Article  CAS  PubMed  Google Scholar 

  10. Li Y, Teng D, Shi X, Qin G, Qin Y, Quan H et al (2020) Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: national cross sectional study. BMJ 369:m997. https://doi.org/10.1136/bmj.m997

    Article  PubMed  PubMed Central  Google Scholar 

  11. Si Y, Wang C, Guo Y, Xu G, Ma Y (2019) Prevalence of Osteoporosis in Patients with Type 2 Diabetes Mellitus in the Chinese Mainland: A Systematic Review and Meta-Analysis. Iran J Public Health 48:1203–1214

    PubMed  PubMed Central  Google Scholar 

  12. Watts NB, Adler RA, Bilezikian JP, Drake MT, Eastell R, Orwoll ES et al (2012) Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 97:1802–1822. https://doi.org/10.1210/jc.2011-3045

    Article  CAS  PubMed  Google Scholar 

  13. Gaudio A, Muratore F, Fiore V, Rapisarda R, Signorelli SS, Fiore CE (2015) Decreased bone cortical density at the forearm in subjects with subclinical peripheral arterial disease. Osteoporos Int 26:1747–1753. https://doi.org/10.1007/s00198-015-3057-6

    Article  CAS  PubMed  Google Scholar 

  14. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18:427–444. https://doi.org/10.1007/s00198-006-0253-4

    Article  CAS  PubMed  Google Scholar 

  15. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27:301–308. https://doi.org/10.1002/jbmr.556

    Article  PubMed  Google Scholar 

  16. Aboyans V, Ricco JB, Bartelink MEL, Bjorck M, Brodmann M, Cohnert T et al (2018) 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European Stroke Organization (ESO)The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur Heart J 39:763–816. https://doi.org/10.1093/eurheartj/ehx095

    Article  PubMed  Google Scholar 

  17. Laroche M, Moulinier L, Leger P, Lefebvre D, Mazieres B, Boccalon H (2003) Bone mineral decrease in the leg with unilateral chronic occlusive arterial disease. Clin Exp Rheumatol 21:103–106

    CAS  PubMed  Google Scholar 

  18. Baldwin MJ, Policha A, Maldonado T, Hiramoto JS, Honig S, Conte MS et al (2017) Novel association between bone mineral density scores and the prevalence of peripheral artery disease in both sexes. Vasc Med (London, England) 22:13–20. https://doi.org/10.1177/1358863X16672740

    Article  Google Scholar 

  19. Collins TC, Ewing SK, Diem SJ, Taylor BC, Orwoll ES, Cummings SR et al (2009) Peripheral arterial disease is associated with higher rates of hip bone loss and increased fracture risk in older men. Circulation 119:2305–2312. https://doi.org/10.1161/CIRCULATIONAHA.108.820993

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wong SY, Kwok T, Woo J, Lynn H, Griffith JF, Leung J et al (2005) Bone mineral density and the risk of peripheral arterial disease in men and women: results from Mr. and Ms Os. Hong Kong Osteoporos Int 16:1933–1938. https://doi.org/10.1007/s00198-005-1968-3

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Zhao L, Yang X, Liu C, Kong N, Yu Y et al (2022) Bone mineral density, bone metabolism-related factors, and microRNA-218 are correlated with disease activities in Chinese ankylosing spondylitis patients. J Clin Lab Anal 36(2):e24223. https://doi.org/10.1002/jcla.24223

  22. Fiore CE, Pennisi P, Tine M (2008) Therapeutic perspectives. Clin Cases Miner Bone Metab 5:45–48

    PubMed  PubMed Central  Google Scholar 

  23. Mangiafico RA, Russo E, Riccobene S, Pennisi P, Mangiafico M, D’Amico F et al (2006) Increased prevalence of peripheral arterial disease in osteoporotic postmenopausal women. J Bone Miner Metab 24:125–131. https://doi.org/10.1007/s00774-005-0658-8

    Article  PubMed  Google Scholar 

  24. Anderson JL, Halperin JL, Albert NM, Bozkurt B, Brindis RG, Curtis LH et al (2013) Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127:1425–1443. https://doi.org/10.1161/CIR.0b013e31828b82aa

    Article  PubMed  Google Scholar 

  25. Farhat GN, Cauley JA, Matthews KA, Newman AB, Johnston J, Mackey R et al (2006) Volumetric BMD and vascular calcification in middle-aged women: the Study of Women’s Health Across the Nation. J Bone Miner Res 21:1839–1846. https://doi.org/10.1359/jbmr.060903

    Article  PubMed  Google Scholar 

  26. Kurabayashi M (2016) [Interaction between bone and artery]. Clin Calcium 26:1119–1126 CliCa160811191126

  27. American Diabetes A (2021) 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care 44:S15–S33. https://doi.org/10.2337/dc21-S002

    Article  Google Scholar 

  28. Conte SM, Vale PR (2018) Peripheral Arterial Disease. Heart Lung Circ 27:427–432. https://doi.org/10.1016/j.hlc.2017.10.014

    Article  PubMed  Google Scholar 

  29. Shuhart CR, Yeap SS, Anderson PA, Jankowski LG, Lewiecki EM, Morse LR et al (2019) Executive Summary of the 2019 ISCD Position Development Conference on Monitoring Treatment, DXA Cross-calibration and Least Significant Change, Spinal Cord Injury, Peri-prosthetic and Orthopedic Bone Health, Transgender Medicine, and Pediatrics. J Clin Densitom 22:453–471. https://doi.org/10.1016/j.jocd.2019.07.001

    Article  PubMed  Google Scholar 

  30. Yang SL, Zhu LY, Han R, Sun LL, Li JX, Dou JT (2017) Pathophysiology of peripheral arterial disease in diabetes mellitus. J Diabetes 9:133–140. https://doi.org/10.1111/1753-0407.12474

    Article  CAS  PubMed  Google Scholar 

  31. Yamauchi M, Yamaguchi T, Nawata K, Tanaka K, Takaoka S, Sugimoto T (2015) Increased low-density lipoprotein cholesterol level is associated with non-vertebral fractures in postmenopausal women. Endocrine 48:279–286. https://doi.org/10.1007/s12020-014-0292-0

    Article  CAS  PubMed  Google Scholar 

  32. Farhat GN, Strotmeyer ES, Newman AB, Sutton-Tyrrell K, Bauer DC, Harris T et al (2006) Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the health, aging, and body composition study. Calcif Tissue Int 79:102–111

    Article  CAS  Google Scholar 

  33. Hyder JA, Allison MA, Barrett-Connor E, Detrano R, Wong ND, Sirlin C et al (2010) Bone mineral density and atherosclerosis: the Multi-Ethnic Study of Atherosclerosis, Abdominal Aortic Calcium Study. Atherosclerosis 209:283–289. https://doi.org/10.1016/j.atherosclerosis.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  34. Liang D-K, Bai X-J, Wu B, Han L-L, Wang X-N, Yang J et al (2014) Associations between bone mineral density and subclinical atherosclerosis: a cross-sectional study of a Chinese population. J Clin Endocrinol Metab 99:469–477. https://doi.org/10.1210/jc.2013-2572

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y-Q, Yang P-T, Yuan H, Cao X, Zhu X-L, Xu G et al (2015) Low bone mineral density is associated with increased arterial stiffness in participants of a health records based study. J Thorac Dis 7:790–798. https://doi.org/10.3978/j.issn.2072-1439.2015.04.47

    Article  PubMed  PubMed Central  Google Scholar 

  36. Shaffer JR, Kammerer CM, Rainwater DL, O’Leary DH, Bruder JM, Bauer RL et al (2007) Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio Family Osteoporosis Study. Calcif Tissue Int 81:430–441. https://doi.org/10.1007/s00223-007-9079-0

    Article  CAS  PubMed  Google Scholar 

  37. von Muhlen D, Allison M, Jassal SK, Barrett-Connor E (2009) Peripheral arterial disease and osteoporosis in older adults: the Rancho Bernardo Study. Osteoporos Int 20:2071–2078. https://doi.org/10.1007/s00198-009-0912-3

    Article  Google Scholar 

  38. van der Klift M, Pols HA, Hak AE, Witteman JC, Hofman A, de Laet CE (2002) Bone mineral density and the risk of peripheral arterial disease: the Rotterdam Study. Calcif Tissue Int 70:443–449. https://doi.org/10.1007/s00223-001-2076-9

    Article  CAS  PubMed  Google Scholar 

  39. Kanis JA, McCloskey EV, Johansson H, Strom O, Borgstrom F, Oden A et al (2008) Case finding for the management of osteoporosis with FRAX–assessment and intervention thresholds for the UK. Osteoporos Int 19:1395–1408. https://doi.org/10.1007/s00198-008-0712-1

    Article  CAS  PubMed  Google Scholar 

  40. de Almeida Pereira Coutinho M, Bandeira E, de Almeida JM, Godoi ET, Vasconcelos G, Bandeira F (2013) Low Bone Mass is Associated with Increased Carotid Intima Media Thickness in Men with Type 2 Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 6:1–6

    PubMed  PubMed Central  Google Scholar 

  41. Lampropoulos CE, Papaioannou I, D’Cruz DP (2012) Osteoporosis–a risk factor for cardiovascular disease? Nat Rev Rheumatol 8:587–598. https://doi.org/10.1038/nrrheum.2012.120

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz AV, Garnero P, Hillier TA, Sellmeyer DE, Strotmeyer ES, Feingold KR et al (2009) Pentosidine and increased fracture risk in older adults with type 2 diabetes. J Clin Endocrinol Metab 94:2380–2386. https://doi.org/10.1210/jc.2008-2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dan Q, Wong R, Chung SK, Chung SS, Lam KS (2004) Interaction between the polyol pathway and non-enzymatic glycation on aortic smooth muscle cell migration and monocyte adhesion. Life Sci 76:445–459. https://doi.org/10.1016/j.lfs.2004.09.010

    Article  CAS  PubMed  Google Scholar 

  44. Srikanthan P, Crandall CJ, Miller-Martinez D, Seeman TE, Greendale GA, Binkley N et al (2014) Insulin resistance and bone strength: findings from the study of midlife in the United States. J Bone Miner Res 29:796–803. https://doi.org/10.1002/jbmr.2083

    Article  CAS  PubMed  Google Scholar 

  45. Pramojanee SN, Phimphilai M, Kumphune S, Chattipakorn N, Chattipakorn SC (2013) Decreased jaw bone density and osteoblastic insulin signaling in a model of obesity. J Dent Res 92:560–565. https://doi.org/10.1177/0022034513485600

    Article  CAS  PubMed  Google Scholar 

  46. Scherer T, Lindtner C, O’Hare J, Hackl M, Zielinski E, Freudenthaler A et al (2016) Insulin Regulates Hepatic Triglyceride Secretion and Lipid Content via Signaling in the Brain. Diabetes 65:1511–1520. https://doi.org/10.2337/db15-1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Anand DV, Lahiri A, Lim E, Hopkins D, Corder R (2006) The relationship between plasma osteoprotegerin levels and coronary artery calcification in uncomplicated type 2 diabetic subjects. J Am Coll Cardiol 47:1850–1857. https://doi.org/10.1016/j.jacc.2005.12.054

    Article  CAS  PubMed  Google Scholar 

  48. Esteghamati A, Aflatoonian M, Rad MV, Mazaheri T, Mousavizadeh M, Nakhjavani M et al (2015) Association of osteoprotegerin with peripheral artery disease in patients with type 2 diabetes. Arch Cardiovasc Dis 108:412–419. https://doi.org/10.1016/j.acvd.2015.01.015

    Article  PubMed  Google Scholar 

  49. Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E et al (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A 96:3540–3545. https://doi.org/10.1073/pnas.96.7.3540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Collin-Osdoby P, Rothe L, Anderson F, Nelson M, Maloney W, Osdoby P (2001) Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J Biol Chem 276:20659–20672. https://doi.org/10.1074/jbc.M010153200

    Article  CAS  PubMed  Google Scholar 

  51. Jorgensen L, Vik A, Emaus N, Brox J, Hansen JB, Mathiesen E et al (2010) Bone loss in relation to serum levels of osteoprotegerin and nuclear factor-kappaB ligand: the Tromso Study. Osteoporos Int 21:931–938. https://doi.org/10.1007/s00198-009-1035-6

    Article  CAS  PubMed  Google Scholar 

  52. Stern A, Laughlin GA, Bergstrom J, Barrett-Connor E (2007) The sex-specific association of serum osteoprotegerin and receptor activator of nuclear factor kappaB legend with bone mineral density in older adults: the Rancho Bernardo study. Eur J Endocrinol 156:555–562. https://doi.org/10.1530/EJE-06-0753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pleskovic A, Ramus SM, Praznikar ZJ, Santl Letonja M, Cokan Vujkovac A, Gazdikova K et al (2017) Polymorphism rs2073618 of the osteoprotegerin gene as a potential marker of subclinical carotid atherosclerosis in Caucasians with type 2 diabetes mellitus. Vasa 46:355–362. https://doi.org/10.1024/0301-1526/a000640

    Article  PubMed  Google Scholar 

  54. Pennisi P, Russo E, Gaudio A, Veca R, D’Amico F, Mangiafico RA et al (2010) The association between carotid or femoral atherosclerosis and low bone mass in postmenopausal women referred for osteoporosis screening. Does osteoprotegerin play a role? Maturitas 67:358–362. https://doi.org/10.1016/j.maturitas.2010.07.013

    Article  CAS  PubMed  Google Scholar 

  55. Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A et al (2004) Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109:2175–2180. https://doi.org/10.1161/01.CIR.0000127957.43874.BB

    Article  CAS  PubMed  Google Scholar 

  56. Schoppet M, Al-Fakhri N, Franke FE, Katz N, Barth PJ, Maisch B et al (2004) Localization of osteoprotegerin, tumor necrosis factor-related apoptosis-inducing ligand, and receptor activator of nuclear factor-kappaB ligand in Monckeberg’s sclerosis and atherosclerosis. J Clin Endocrinol Metab 89:4104–4112. https://doi.org/10.1210/jc.2003-031432

    Article  CAS  PubMed  Google Scholar 

  57. Mangan SH, Van Campenhout A, Rush C, Golledge J (2007) Osteoprotegerin upregulates endothelial cell adhesion molecule response to tumor necrosis factor-alpha associated with induction of angiopoietin-2. Cardiovasc Res 76:494–505. https://doi.org/10.1016/j.cardiores.2007.07.017

    Article  CAS  PubMed  Google Scholar 

  58. Laroche M, Pouilles JM, Ribot C, Bendayan P, Bernard J, Boccalon H et al (1994) Comparison of the bone mineral content of the lower limbs in men with ischaemic atherosclerotic disease. Clin Rheumatol 13:611–614. https://doi.org/10.1007/BF02243003

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Wenzhou Municipal Science and Technology Bureau Foundation (Y20210432).

Author information

Authors and Affiliations

Authors

Contributions

All authors have met the requirements for authorship. MC had the idea for and designed the study. XZ, YX, FL, and MC collected data and processed statistical analysis. XZ and MC interpreted data and drafted the manuscript. All the authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to M. Chen.

Ethics declarations

Ethics approval

This study was approved by the Medical Ethics Review Committees of the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University.

Consent to participate

The requirement of informed consent was waived due to the retrospective design of the study.

Conflicts of interest

Xiumeng Zhang, Yu Xu, Feida Li, and Mochuan Chen declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Xu, Y., Li, F. et al. Associations between bone mineral density and subclinical peripheral arterial disease in elderly men with type 2 diabetes mellitus. Osteoporos Int 33, 1715–1724 (2022). https://doi.org/10.1007/s00198-022-06404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06404-z

Keywords

Navigation