Skip to main content
Log in

Gamma-glutamyl-transferase is associated with incident hip fractures in women and men ≥ 50 years: a large population-based cohort study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The association of serum gamma-glutamyl-transferase (GGT) with hip fracture risk has not been examined in women and men ≥ 50 years. We show that elevated GGT was associated with increased hip fracture risk, particularly in men. GGT could be a candidate serum marker of long-term hip fracture risk in the elderly.

Introduction

We herein examined a possible relation between serum levels of GGT and hip fracture risk in women and men aged ≥ 50 years, which has not been investigated before.

Methods

In this population-based prospective cohort study, approximately 41,000 women and nearly 33,000 men ≥ 50 years participating in a medical prevention program 1985–2005 in western Austria were followed up for the occurrence of osteoporotic hip fractures during 2003–2013. ICD-10 based discharge diagnoses for hip fracture included S72.0, S72.1, and S72.2 available from all regional hospitals. GGT-related hip fracture risk was ascertained at each participant´s first and last examination during the prevention program. In a subset of 5445 participants, alcohol consumption could be included as a covariate.

Results

In men, hip fracture risk rose significantly by 75% and 86% for every tenfold increase of GGT measured at the first and last examination, respectively, and in women, hip fracture risk rose by 22% from the last examination. Elevated GGT (≥ 36 U/l in women, ≥ 56 U/l in men) at the first examination was associated with increased hip fracture risk only in men (HR 1.51, 95% CI 1.25–1.82), and at the last examination in both women (HR 1.14, 95% CI 1.02–1.28) and men (HR 1.61, 95% CI 1.33–1.95). Alcohol consumption had no significant influence on GGT-mediated hip fracture risk in women and men.

Conclusions

Our findings identified an association of elevated GGT and hip fracture in women and men ≥ 50 years and suggest GGT as a candidate serum marker of long-term hip fracture risk in an elderly population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

N/A.

References

  1. Kanis JA, Oden A, Johnell O, Jonsson B, De Laet C, Dawson A (2001) The burden of osteoporotic fractures: a method for setting intervention thresholds. Osteoporos Int 12:417–427. https://doi.org/10.1007/s001980170112

    Article  CAS  PubMed  Google Scholar 

  2. Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jönsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dimai HP, Redlich K, Peretz M, Borgström F, Siebert U, Mahlich J (2012) Economic burden of osteoporotic fractures in Austria. Health Econ Rev 2:12. https://doi.org/10.1186/2191-1991-2-12

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ivaska KK, Gerdhem P, Väänänen HK, Ǻkesson K, Obrant KJ (2010) Bone turnover markers and prediction of fracture: a prospective follow-up study of 1040 elderly women for a mean of 9 years. J Bone Miner Res 25:393–403. https://doi.org/10.1359/jbmr.091006

    Article  CAS  PubMed  Google Scholar 

  5. Chubb SAP, Byrnes E, Manning L, Beilby JP, Ebeling PR, Vasikaran SD, Golledge J, Flicker L, Yeap BB (2015) Reference intervals for bone turnover markers and their association with incident hip fractures in older men: the health in men study. J Clin Endocrinol Metab 100:90–99. https://doi.org/10.1210/jc.2014-2646

    Article  CAS  PubMed  Google Scholar 

  6. Crandall CJ, Vasan S, LaCroix A, LeBoff MS, Cauley JA, Robbins JA, Jackson RD, Bauer DC (2018) Bone turnover markers are not associated with hip fracture risk: a case-control study in the women´s health initiative. J Bone Miner Res 33:1199–1208. https://doi.org/10.1002/jbmr.3471

    Article  CAS  PubMed  Google Scholar 

  7. Massera D, Xu S, Walker MD, Valderrábano RJ, Mukamal KJ, Ix JH, Siscovick DS, Tracy RP, Robbins JA et al (2019) Biochemical markers of bone turnover and risk of incident hip fracture in older women: the cardiovascular health study. Osteoporos Int 30:1755–1765. https://doi.org/10.1007/s00198-019-05043-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lv Q-B, Gao X, Liu X, Shao Z-X, Xu Q-H, Tang L, Chi Y-L, Wu A-M (2017) The serum 25-hydroxyvitamin D levels and hip fracture risk: a meta-analysis of prospective cohort studies. Oncotarget 8:39849–39858. https://doi.org/10.18632/oncotarget.16337

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dominic E, Brozek W, Peter RS, Fromm E, Ulmer H, Rapp K, Concin H, Nagel G (2020) Metabolic factors and hip fracture risk in a large Austrian cohort study. Bone Rep 12:100244. https://doi.org/10.1016/j.bonr.2020.100244

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mehta T, Bůžková P, Sarnak MJ, Chonchol M, Cauley JA, Wallace E, Fink HA, Robbins J, Jalal D (2015) Serum urate levels and the risk of hip fractures: data from the cardiovascular health study. Metab Clin Exp 64:438–446. https://doi.org/10.1016/j.metabol.2014.11.006

    Article  CAS  PubMed  Google Scholar 

  11. Preyer O, Concin H, Nagel G, Zitt E, Ulmer H, Brozek W (2021) Serum uric acid is associated with incident hip fractures in women and men – results from a large Austrian population-based cohort study. Maturitas 148:46–53. https://doi.org/10.1016/j.maturitas.2021.03.005

    Article  CAS  PubMed  Google Scholar 

  12. Whitfield JB (2001) Gamma glutamyl transferase. Crit Rev Clin Lab Sci 38:263–355. https://doi.org/10.1080/20014091084227

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H, Forman HJ, Choi J (2005) γ-Glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol 401:468–483. https://doi.org/10.1016/S0076-6879(05)01028-1

    Article  CAS  PubMed  Google Scholar 

  14. Lee D-H, Blomhoff R, Jacobs DR (2004) Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 38:535–539. https://doi.org/10.1080/10715760410001694026

    Article  CAS  PubMed  Google Scholar 

  15. Corti A, Belcastro E, Dominici S, Maellaro E, Pompella A (2020) The dark side of gamma-glutamyltransferase (GGT): pathogenic effects of an “antioxidant” enzyme. Free Radic Biol Med 160:807–819. https://doi.org/10.1016/j.freeradbiomed.2020.09.005

    Article  CAS  PubMed  Google Scholar 

  16. Ruttmann E, Brant LJ, Concin H, Diem G, Rapp K, Ulmer H (2005) γ-Glutamyltransferase as a risk factor for cardiovascular disease mortality: an epidemiological investigation in a cohort of 163,944 Austrian adults. Circulation 112:2130–2137. https://doi.org/10.1161/CIRCULATIONAHA.105.552547

    Article  CAS  PubMed  Google Scholar 

  17. Strasak AM, Rapp K, Brant LJ, Hilbe W, Gregory M, Oberaigner W, Ruttmann E, Concin H, Diem G, Pfeiffer KP et al (2008) Association of γ-glutamyltransferase and risk of cancer incidence in men: a prospective study. Cancer Res 68:3970–3977. https://doi.org/10.1158/0008-5472.CAN-07-6686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Strasak AM, Pfeiffer RM, Klenk J, Hilbe W, Oberaigner W, Gregory M, Concin H, Diem G, Pfeiffer KP, Ruttmann E et al (2008) Prospective study of the association of gamma-glutamyltransferase with cancer incidence in women. Int J Cancer 123:1902–1906. https://doi.org/10.1002/ijc.23714

    Article  CAS  PubMed  Google Scholar 

  19. Kuyumcu ME, Yesil Y, Oztürk ZA, Cınar E, Kızılarslanoglu C, Halil M, Ulger Z, Yesil NK, Cankurtaran M, Arıoğul S (2012) The association between homocysteine (hcy) and serum natural antioxidants in elderly bone mineral densitometry (BMD). Arch Gerontol Geriatr 55:739–743. https://doi.org/10.1016/j.archger.2012.05.004

    Article  CAS  PubMed  Google Scholar 

  20. Choi HS, Kim KJ, Rhee Y, Lim S-K (2016) Serum γ-glutamyl transferase is inversely associated with bone mineral density independently of alcohol consumption. Endocrinol Metab 31:64–71. https://doi.org/10.3803/EnM.2016.31.1.64

    Article  CAS  Google Scholar 

  21. Do HJ, Shin J-S, Lee J, Lee YJ, Kim M-R, Nam D, Kim E-J, Park Y, Suhr K, Ha I-H (2018) Association between liver enzymes and bone mineral density in Koreans: a cross-sectional study. BMC Musculoskelet Disord 19:410. https://doi.org/10.1186/s12891-018-2322-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Breitling LP (2015) Liver enzymes and bone mineral density in the general population. J Clin Endocrinol Metab 100:3832–3840. https://doi.org/10.1210/jc.2015-2016

    Article  CAS  PubMed  Google Scholar 

  23. Kim B-J, Baek S, Ahn SH, Kim SH, Jo M-W, Bae SJ, Kim H-K, Park G-M, Kim Y-H, Lee SH et al (2014) A higher serum gamma-glutamyl transferase level could be associated with an increased risk of incident osteoporotic fractures in Korean men aged 50 years or older. Endocr J 61:257–263. https://doi.org/10.1507/endocrj.ej13-0463

    Article  CAS  PubMed  Google Scholar 

  24. Holmberg AH, Johnell O, Nilsson PM, Nilsson J, Berglund G, Åkesson K (2006) Risk factors for fragility fracture in middle age. A prospective population-based study of 33,000 men and women. Osteoporos Int 17:1065–1077. https://doi.org/10.1007/s00198-006-0137-7

    Article  CAS  PubMed  Google Scholar 

  25. Holmberg AH, Johnell O, Nilsson PM, Nilsson J-Å, Berglund G, Åkesson K (2005) Risk factors for hip fractures in a middle-aged population: a study of 33,000 men and women. Osteoporos Int 16:2185–2194. https://doi.org/10.1007/s00198-005-2006-1

    Article  PubMed  Google Scholar 

  26. Yang S, Feskanich D, Willett WC, Eliassen AH, Wu T (2014) Association between global biomarkers of oxidative stress and hip fracture in postmenopausal women: a prospective study. J Bone Miner Res 29:2577–2583. https://doi.org/10.1002/jbmr.2302

    Article  PubMed  Google Scholar 

  27. Maurel DB, Boisseau N, Benhamou CL, Jaffre C (2012) Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int 23:1–16. https://doi.org/10.1007/s00198-011-1787-7

    Article  CAS  PubMed  Google Scholar 

  28. Babor TF, Higgins-Biddle JC, Saunders JB, Monteiro MG (2001) AUDIT – The alcohol use disorders identification test, guidelines for use in primary care, 2nd edn. World Health Organization, Department of Mental Health and Substance Dependence, Geneva

  29. Strasak AM, Goebel G, Concin H, Pfeiffer RM, Brant LJ, Nagel G, Oberaigner W, Concin N, Diem G, Ruttmann E et al (2010) Prospective study of the association of serum γ-glutamyltransferase with cervical intraepithelial neoplasia III and invasive cervical cancer. Cancer Res 70:3586–3593. https://doi.org/10.1158/0008-5472.CAN-09-3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. World Health Organization (2004) ICD-10: International statistical classification of diseases and related health problems, 10th revision, 2nd edn. World Health Organization, Geneva

  31. Leiherer A, Geiger K, Muendlein A, Drexel H (2014) Hypoxia induces a HIF-1α dependent signaling cascade to make a complex metabolic switch in SGBS-adipocytes. Mol Cell Endocrinol 383:21–31. https://doi.org/10.1016/j.mce.2013.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Domazetovic V, Marucci G, Iantomasi G, Brandi ML, Vincenzini MT (2017) Oxidative stress in bone remodeling: role of antioxidants. Clin Cases Miner Bone Metab 14:209–216. https://doi.org/10.11138/ccmbm/2017.14.1.209

    Article  PubMed  PubMed Central  Google Scholar 

  33. Sakuta H, Suzuki T, Yasuda H, Ito T (2005) γ-Glutamyl transferase and metabolic risk factors for cardiovascular disease. Intern Med 44:538–541. https://doi.org/10.2169/internalmedicine.44.538

    Article  CAS  PubMed  Google Scholar 

  34. Lippi G, Salvagno GL, Targher G, Montagnana M, Guidi GC (2008) Plasma γ-glutamyl transferase activity predicts homocysteine concentration in a large cohort of unselected outpatients. Intern Med 47:705–707. https://doi.org/10.2169/internalmedicine.47.0810

    Article  PubMed  Google Scholar 

  35. Gjesdal CG, Vollset SE, Ueland PM, Refsum H, Meyer HE, Tell GS (2007) Plasma homocysteine, folate, and vitamin B12 and the risk of hip fracture: the Hordaland Homocysteine Study. J Bone Miner Res 22:747–756. https://doi.org/10.1359/JBMR.070210

    Article  CAS  PubMed  Google Scholar 

  36. Saito M, Marumo K (2018) The effects of homocysteine on the skeleton. Curr Osteoporos Rep 16:554–560. https://doi.org/10.1007/s11914-018-0469-1

    Article  PubMed  Google Scholar 

  37. Niida S, Kawahara M, Ishizuka Y, Ikeda Y, Kondo T, Hibi T, Suzuki Y, Ikeda K, Taniguchi N (2004) γ-Glutamyltranspeptidase stimulates receptor activator of nuclear factor-κB ligand expression independent of its enzymatic activity and serves as a pathological bone-resorbing factor. J Biol Chem 279:5752–5756. https://doi.org/10.1074/jbc.M311905200

    Article  CAS  PubMed  Google Scholar 

  38. Moriwaki S, Into T, Suzuki K, Miyauchi M, Takata T, Shibayama K, Niida S (2016) γ-Glutamyltranspeptidase is an endogenous activator of Toll-like receptor 4-mediated osteoclastogenesis. Sci Rep 6:35930. https://doi.org/10.1038/srep35930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cappelli S, Epistolano MC, Vianello A, Mazzone A, Glauber M, Franzini M, Ottaviano V, Pompella A, Paolicchi A, Tanganelli P (2010) Aortic valve disease and gamma-glutamyltransferase: accumulation in tissue and relationships with calcific degeneration. Atherosclerosis 213:385–391. https://doi.org/10.1016/j.atherosclerosis.2010.08.063

    Article  CAS  PubMed  Google Scholar 

  40. Zhang X, Yu Z, Yu M, Qu X (2015) Alcohol consumption and hip fracture risk. Osteoporos Int 26:531–542. https://doi.org/10.1007/s00198-014-2879-y

    Article  CAS  PubMed  Google Scholar 

  41. Fung TT, Mukamal KJ, Rimm EB, Meyer HE, Willett WC, Feskanich D (2019) Alcohol intake, specific alcoholic beverages, and risk of hip fractures in postmenopausal women and men age 50 and older. Am J Clin Nutr 110:691–700. https://doi.org/10.1093/ajcn/nqz135

    Article  PubMed  PubMed Central  Google Scholar 

  42. Søgaard AJ, Ranhoff AH, Meyer HE, Omsland TK, Nystad W, Tell GS, Holvik K (2018) The association between alcohol consumption and risk of hip fracture differs by age and gender in Cohort of Norway: a NOREPOS study. Osteoporos Int 29:2457–2467. https://doi.org/10.1007/s00198-018-4627-1

    Article  PubMed  Google Scholar 

  43. Dimai HP, Svedbom A, Fahrleitner-Pammer A, Pieber T, Resch H, Zwettler E, Chandran M, Borgström F (2011) Epidemiology of hip fractures in Austria: evidence for a change in the secular trend. Osteoporos Int 22:685–692. https://doi.org/10.1007/s00198-010-1271-9

    Article  CAS  PubMed  Google Scholar 

  44. Concin H, Brozek W, Benedetto K-P, Häfele H, Kopf J, Bärenzung T, Schnetzer R, Schenk C, Stimpfl E, Waheed-Hutter U et al (2016) Hip fracture incidence 2003–2013 and projected cases until 2050 in Austria: a population-based study. Int J Public Health 61:1021–1030. https://doi.org/10.1007/s00038-016-0878-9

    Article  PubMed  Google Scholar 

  45. Naderpoor N, Mousa A, de Courten M, Scragg R, de Courten B (2018) The relationship between 25-hydroxyvitamin D concentration and liver enzymes in overweight or obese adults: cross-sectional and interventional outcomes. J Steroid Biochem Mol Biol 177:193–199. https://doi.org/10.1016/j.jsbmb.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  46. He X, Xu C, Lu Z-H, Fang X-Z, Tan J, Song Y (2020) Low serum 25-hydroxyvitamin D levels are associated with liver injury markers in the US adult population. Public Health Nutr 23:2915–2922. https://doi.org/10.1017/S1368980020000348

    Article  PubMed  Google Scholar 

  47. Guañabens N, Parés A (2018) Osteoporosis in chronic liver disease. Liver Int 38:776–785. https://doi.org/10.1111/liv.1373

    Article  PubMed  Google Scholar 

  48. Koenig G, Seneff S (2015) Gamma-glutamyltransferase: a predictive biomarker of cellular antioxidant inadequacy and disease risk. Dis Markers 2015:818570. https://doi.org/10.1155/2015/818570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wolbers M, Koller MT, Stel VS, Schaer B, Jager KJ, Leffondré K, Heinze G (2014) Competing risks analyses: objectives and approaches. Eur Heart J 35:2936–2941. https://doi.org/10.1093/eurheartj/ehu131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Elmar Stimpfl for excellent technical support, the hospitals of Vorarlberg for providing the data, and the Vorarlberg State Government.

Funding

This work was supported by the state of Vorarlberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Brozek.

Ethics declarations

Ethics approval

The Ethics Committee of Vorarlberg approved the evaluation of the data (EK-Nr. 2006–6/3), and all procedures were carried out in agreement with the Helsinki Declaration of 1975, as revised in 2013.

Consent to participate

Written consent was obtained from each patient or subject after full explanation of the purpose and nature of all procedures used.

Consent for publication

N/A

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brozek, W., Ulmer, H., Pompella, A. et al. Gamma-glutamyl-transferase is associated with incident hip fractures in women and men ≥ 50 years: a large population-based cohort study. Osteoporos Int 33, 1295–1307 (2022). https://doi.org/10.1007/s00198-022-06307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-022-06307-z

Keywords

Navigation