Skip to main content

Association between body mass index, bone bending strength, and BMD in young sedentary women

Abstract

Summary

The rationale was to determine whether body mass index (BMI) is a predictor of bone bending strength and bone mineral density (BMD) in young sedentary women. Results show that BMI is not a predictor of bone bending strength and that young women with low BMI also have low BMD.

Introduction

The purpose of this study was to determine whether body mass index (BMI) is a predictor of tibial or ulnar bending strength and bone mineral density (BMD) in sedentary women.

Methods

Sedentary women (n = 34), age 19–27 years, with low BMI (LBMI < 18.5 kg/m2, n = 16), and normal or high BMI (NHBMI between 18.5 and 29.9 kg/m2, n = 18) participated as study subjects. Study outcomes included tibial and ulnar bending strength (EI in Nm2) using a non-invasive mechanical response tissue analyzer (MRTA); BMD and bone mineral content (BMC) of the whole body (WB), femoral neck (FN), total hip (TH), lumbar spine 1–4 (LS1–4), and ulna; and bone turnover biomarkers.

Results

The LBMI group have lower (p < 0.01) body weight [group difference (Δ) = 32.0%], lean mass (LM) (Δ = 23.1%), fat mass (FM) (Δ = 77.2%), and tibial bending strength (Δ = 22.0%), compared to the NHBMI. The LBMI group also have lower (all p < 0.025) BMC in WB (Δ = 19.9%), FN (Δ = 20.1%) and TH (Δ = 19.0%), compared to the NHMBI, not in BMD results. Multivariate regression analysis shows that significant predictors of tibial bending strength are tibia length (adjusted R2 = .341), age (adjusted R2 = .489), ulna BMD (adjusted R2 = .536), and LM (adjusted R2 = .580). BMI was positively correlated with tibial EI (p < 0.05), height, weight, FM, LM, body fat% (all p < 0.01), and BMD of WB, FN, TH, and LS 1–4 (p < 0.05 or < 0.01).

Conclusions

Our results show that BMI is not a significant predictor of tibial or ulnar bending strength in young sedentary women.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Ravn P, Cizza G, Bjarnason NH, Thompson D, Daley M, Wasnich RD, McClung M, Hosking D, Yates AJ, Christiansen C (1999) Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women. Early Postmenopausal Intervention Cohort (EPIC) study group. J Bone Miner Res 14(9):1622–1627

    CAS  Article  Google Scholar 

  2. 2.

    Morin S, Tsang JF, Leslie WD (2009) Weight and body mass index predict bone mineral density and fractures in women aged 40 to 59 years. Osteoporos Int 20:363–370. https://doi.org/10.1007/s00198-008-0688-x

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Yoo HJ, Park MS, Yang SJ, Kim TN, Lim KI, Kang HJ, Song W, Baik SH, Choi DS, Choi KM (2012) The differential relationship between fat mass and bone mineral density by gender and menopausal status. J Bone Miner Metab 30:47–53

    Article  Google Scholar 

  4. 4.

    Johansson H, Kanis JA, Odén A, McCloskey E, Roland D, Chapurlat RD, Christiansen C et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Min Res 29(1):223–233. https://doi.org/10.1002/jbmr.2017

    Article  Google Scholar 

  5. 5.

    Bierhals IO, Vaz JDS, Bielemann RM, Mola CL, Barros FC, Goncalves H et al (2019) Associations between body mass index, body composition and bone density in young adults: findings from a southern Brazilian cohort. BMC Musculoskelet Disord 20:322

    Article  Google Scholar 

  6. 6.

    Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    CAS  Article  Google Scholar 

  7. 7.

    Jackowski SA, Lanovaz JL, Van Oort C, Baxter-Jones AD (2014) Does lean tissue mass accrual during adolescence influence bone structure strength at the proximal femur in young adulthood? Osteoporos Int 25(4):1297–1304

    CAS  Article  Google Scholar 

  8. 8.

    Jeddi M, Dabbaghmanesh MH, Ranjbar Omrani G, Ayatollahi SM, Bagheri Z (2015) Bakhshayeshkaram M (2015) Relative importance of lean and fat mass on bone mineral density in Iranian children and adolescents. Int J Endocrinol Metab 13(3):e25542. https://doi.org/10.5812/ijem.25542v2

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Edwards MH, Ward KA, Ntani G, Parsons C, Thompson J, Sayer AA, Dennison EM, Cooper C (2015) Lean mass and fat mass have differing associations with bone microarchitecture assessed by high-resolution peripheral quantitative computed tomography in men and women from the Herfordshire Cohort Study. Bone 81:145–151

    Article  Google Scholar 

  10. 10.

    Friedlander AL, Genant HK, Sadowsky S, Byl NN, Glüer CC (1995) A two-year program of aerobics and weight training enhances bone mineral density of young women. J Bone Miner Res 10:574–585

    CAS  Article  Google Scholar 

  11. 11.

    Vainionpää A, Korpelainen R, Vihriala E, Rinta-Paavola A, Leppaluoto J, Jamsa T (2006) Intensity of exercise is associated with bone density change in premenopausal women. Osteoporos Int 17:455–463

    Article  Google Scholar 

  12. 12.

    Ho AY, Kung AW (2005) Determinants of peak bone mineral density and bone area in young women. J Bone Miner Metab 23(6):470–475

    Article  Google Scholar 

  13. 13.

    Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31(1):45–50

    Article  Google Scholar 

  14. 14.

    Cardadeiro G, Baptista F, Rosati N, Zymbal V, Janz KF, Sardinha LB (2014) Influence of physical activity and skeleton geometry on bone mass at the proximal femur in 10- to 12-year-old children – a longitudinal study. Osteoporo Int 25(8):2035–2045

    CAS  Article  Google Scholar 

  15. 15.

    Cole ZA, Harvey NC, Kim M, Ntani G, Robinson SM, Inskip HM et al (2012) Increased fat mass is associated with increased bone size but reduced volumetric density in pre pubertal children. Bone 50(2):562–567

    CAS  Article  Google Scholar 

  16. 16.

    Daly RM, Stenevi-Lumdgren LC, Karlsson MK (2008) Muscle determinants of bone mass, geometry and strength in prepubertal girls. Med Sci Sports Exerc 40(6):1135–1141

    Article  Google Scholar 

  17. 17.

    Kim J, Kwon H, Heo B-K, Joh H-K, Lee C-M, Hwang S-S et al (2018) The association between fat mass, lean mass and bone mineral density in premenopausal women in Korea: a cross-sectional study. Korean J Fam Med 39(2):74–84

    Article  Google Scholar 

  18. 18.

    Liang MTC, Arnaud SB, Steele CR, Hatch P, Moreno A (2005) Ulnar and tibial bending stiffness as an index of bone strength in synchronized swimmers and gymnasts. Eur J Appl Physiol 94:400–407

    Article  Google Scholar 

  19. 19.

    Steele CR, Zhou L-Z, Guido D, Marcus R, Heinrichs WL, Cheema C (1988) Noninvasive determination of ulnar stiffness from mechanical response – in vivo comparison of stiffness and bone mineral content in humans. J Biomech Eng 110(2):87–96

    CAS  Article  Google Scholar 

  20. 20.

    Arnaud SB, Steele CR, Zhou L-J, Hutchinson T, Marcus R (1991) A direct non-invasive measure of long bone strength. Proc Ann Int Cong IEEE Eng Int Med Biol Soc 13:1984–1985

    Google Scholar 

  21. 21.

    Roberts SG, Hutchinson T, Arnaud SB, Kirati BJ, Martin RB, Steele CR (1996) Noninvasive determination of bone mechanical properties using vibration response: a refined model and validation in vivo. J Biomech 29(1):91–98

    CAS  Article  Google Scholar 

  22. 22.

    Vasikaran S, Eastella R, Bruyere O, et al (2010) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int. https://doi.org/10.1007/s00195-016-1501-1

  23. 23.

    American College of Sport Medicine’s Guidelines for Exercise Testing and Prescription (Tenth Edition) 2018. Wolters Kluwer, Philadelphia, 66–105

  24. 24.

    Hutchinson TM, Bakulin AV, Rakhmanov AS, Martin RB, Steele CR, Arnaud SB (2001) Effects of chair restraint on the strength of tibia in rhesus monkeys. J Med Primatol 30:313–321

    CAS  Article  Google Scholar 

  25. 25.

    Arnold PA, Ellerbrock ER, Bowman L, Loucks AB (2014) Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas. J Biomechanics 47(14):3580–3583

    Article  Google Scholar 

  26. 26.

    Loucks AB, Clark BC, Bowman L (2017) Response to “clinical evaluation of bone strength and fracture risk.” Curr Osteopos Rep 15(4):396–397

    Article  Google Scholar 

  27. 27.

    Miller LE et al (2013) Rational, design and clinical performance of the mechanical response tissue analyser: a non-invasive technology for measurement of long bone bending stiffness. J Medical Engineering Technology 37(2):144–149

    Article  Google Scholar 

  28. 28.

    Cohen J (1988) Statistical Power Analysis for the Behavioural Sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale, pp 22–25

    Google Scholar 

  29. 29.

    Robling AG, Hinant FM, Burr DB, Turner CH (2002) Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res 17(8):1545–1554

    Article  Google Scholar 

  30. 30.

    Gabel L, Macdonald HM, Nettlefold L, McKay HA (2017) Physical activity, sedentary time, and bone strength from children to early adulthood: A mixed longitudinal HR-pQCT study. J Bone Min Res. 32(7):1525–1536. https://doi.org/10.1002/jbmr.3115

    CAS  Article  Google Scholar 

  31. 31.

    Myburgh K, Charette S, Zhou L-Z, Steele CR, Arnaud SB, Marcus R (1993) Influence of recreational activity and muscle strength on ulnar bending stiffness in healthy men. Med Sci Sports Exerc 25:592–596

    CAS  PubMed  Google Scholar 

  32. 32.

    Martin RB, Ishida J (1989) The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech 22:419–426

    CAS  Article  Google Scholar 

  33. 33.

    Reid IR (2002) Relationships among body mass, its components, and bone. Bone 31(5):547–555

    CAS  Article  Google Scholar 

  34. 34.

    Hla MM, Davis JW, Ross PD et al (1996) A multicenter study of the influence of fat and lean mass on bone mineral content: evidence for differences in their relative influence at major fracture sites. Am J Clin Nutr 64:354–360

    CAS  Article  Google Scholar 

  35. 35.

    Hannona RA, Clowesa JA, Eagletona AC, Hadarib AA, Eastella R, Blumsohn A (2004) Clinical performance of immunoreactive tartrate-resistant acid phosphatase isoform 5b as a marker of bone resorption. Bone 34(1):187–194

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the President’s Research, Scholarship, and Creative Activities Award 2014, California State Polytechnic University, Pomona. The authors express their great appreciation to the study participants, and NASA Ames Research Center, Life Science Division for lending us the MRTA instrument to conduct the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. T. C. Liang.

Ethics declarations

Conflict of interest statement

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Auslander, A., Liang, M.T.C., Gavin, J. et al. Association between body mass index, bone bending strength, and BMD in young sedentary women. Osteoporos Int (2021). https://doi.org/10.1007/s00198-021-06201-0

Download citation

Keywords

  • Mechanical response tissue analyzer
  • Dual-energy X-ray absorptiometry
  • Bone mineral content
  • Bone turnover biomarkers
  • Fat mass
  • Lean mass