Skip to main content

The independent and interactive associations of physical activity intensity and vitamin D status with bone mineral density in prepubertal children: the PANIC Study



It is unclear how physical activity intensity and vitamin D status are related to bone health in prepubertal children. We found positive associations between vitamin D status and moderate-to-vigorous physical activity with bone in boys and girls. This highlights the importance of lifestyle factors for skeletal health prepuberty.


The sex-specific independent and interactive associations of physical activity (PA) intensity and serum 25-hydroxyvitamin D (25(OH)D) levels with areal bone mineral density (aBMD) were investigated in prepubertal children.


The participants were 366 prepubertal Finnish children (190 boys, 176 girls) aged 6–8 years. Linear regression analysed the associations of sedentary time (ST), light PA (LPA), moderate PA (MPA), moderate-to-vigorous PA (MVPA) and vigorous PA (VPA) measured by accelerometery, and serum 25(OH)D with total body less head (TBLH) and lower-limb aBMD, measured by dual-energy X-ray absorptiometry.


There was no interaction between PA intensity or serum 25(OH)D and sex with aBMD. MPA and MVPA were positively associated with TBLH and lower-limb aBMD (β = 0.11, 95% CI 0.02–0.20, p = 0.01). Serum 25(OH)D was positively associated with TBLH and lower-limb aBMD (β = 0.09, 95% CI 0.01–0.18, p = 0.03). There were no interactions between PA intensity and serum 25(OH)D with aBMD.


Vitamin D status, MPA and MVPA levels in active prepubertal children were positively associated with aBMD. The influence of MVPA is due to the MPA component, though our findings regarding the role of VPA should be interpreted with caution, as shorter accelerometer epochs are needed to more accurately assess VPA. This study adds evidence to the promotion of MPA and behaviours to encourage optimal vitamin D status in supporting skeletal health in childhood, though these need not be used in conjunction to be beneficial, and a sex-specific approach is not necessary in prepubertal children.

Trial registration number

NCT01803776. Date of registration: 4/03/2013

This is a preview of subscription content, access via your institution.

Fig. 1


  1. Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26(8):1729–1739.

    Article  PubMed  Google Scholar 

  2. Bailey DA, McKay HA, Mirwald RL, Crocker PR, Faulkner RA (1999) A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res 14(10):1672–1679.

    CAS  Article  PubMed  Google Scholar 

  3. Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, O’Karma M, Wallace TC, Zemel BS (2016) The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 27(4):1281–1386.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Clark EM, Ness AR, Bishop NJ, Tobias JH (2006) Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 21(9):1489–1495.

    Article  PubMed  Google Scholar 

  5. Janz KF, Burns TL, Torner JC, Levy SM, Paulos R, Willing MC, Warren JJ (2001) Physical activity and bone measures in young children: the Iowa bone development study. Pediatrics 107(6):1387–1393.

    CAS  Article  PubMed  Google Scholar 

  6. Tobias JH, Steer CD, Mattocks CG, Riddoch C, Ness AR (2007) Habitual levels of physical activity influence bone mass in 11-year-old children from the United Kingdom: findings from a large population-based cohort. J Bone Miner Res 22(1):101–109.

    Article  PubMed  Google Scholar 

  7. Gracia-Marco L, Moreno LA, Ortega FB, Leon F, Sioen I, Kafatos A, Martinez-Gomez D, Widhalm K, Castillo MJ, Vicente-Rodriguez G, Group HS (2011) Levels of physical activity that predict optimal bone mass in adolescents: the HELENA study. Am J Prev Med 40(6):599–607.

    Article  PubMed  Google Scholar 

  8. Vlachopoulos D, Barker AR, Williams CA, SA AR, Knapp KM, Metcalf BS, Fatouros IG, Moreno LA, Gracia-Marco L (2017) The impact of sport participation on bone mass and geometry in male adolescents. Med Sci Sports Exerc 49(2):317–326.

    Article  PubMed  Google Scholar 

  9. MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med 36(4):250–257 discussion 257

    CAS  Article  Google Scholar 

  10. Harvey NC, Cole ZA, Crozier SR, Kim M, Ntani G, Goodfellow L, Robinson SM, Inskip HM, Godfrey KM, Dennison EM, Wareham N, Ekelund U, Cooper C, S. W. S. Study Group (2012) Physical activity, calcium intake and childhood bone mineral: a population-based cross-sectional study. Osteoporos Int 23(1):121–130.

    CAS  Article  PubMed  Google Scholar 

  11. Hazell TJ, Pham TT, Jean-Philippe S, Finch SL, El Hayek J, Vanstone CA, Agellon S, Rodd CJ, Weiler HA (2015) Vitamin D status is associated with bone mineral density and bone mineral content in preschool-aged children. J Clin Densitom 18(1):60–67.

    Article  PubMed  Google Scholar 

  12. Pekkinen M, Viljakainen H, Saarnio E, Lamberg-Allardt C, Mäkitie O (2012) Vitamin D is a major determinant of bone mineral density at school age. PLoS One 7(7):e40090.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Breen ME, Laing EM, Hall DB, Hausman DB, Taylor RG, Isales CM, Ding KH, Pollock NK, Hamrick MW, Baile CA, Lewis RD (2011) 25-hydroxyvitamin D, insulin-like growth factor-I, and bone mineral accrual during growth. J Clin Endocrinol Metab 96(1):E89–E98.

    CAS  Article  PubMed  Google Scholar 

  14. Valtuena J, Gracia-Marco L, Vicente-Rodriguez G, Gonzalez-Gross M, Huybrechts I, Rey-Lopez JP, Mouratidou T, Sioen I, Mesana MI, Martinez AE, Widhalm K, Moreno LA, Group HS (2012) Vitamin D status and physical activity interact to improve bone mass in adolescents. The HELENA Study. Osteoporos Int 23(8):2227–2237.

    CAS  Article  PubMed  Google Scholar 

  15. Tanner JM (1986) Normal growth and techniques of growth assessment. Clin Endocrinol Metab 15(3):411–451.

    CAS  Article  PubMed  Google Scholar 

  16. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320(7244):1240–1243.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Cole TJ, Flegal KM, Nicholls D, Jackson AA (2007) Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ 335(7612):194.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jaworski M, Pludowski P (2013) Precision errors, least significant change, and monitoring time interval in pediatric measurements of bone mineral density, body composition, and mechanostat parameters by GE lunar prodigy. J Clin Densitom 16(4):562–569.

    Article  PubMed  Google Scholar 

  19. International Society for Clinical Densitometry (2019) 2019 ISCD Official Positions - Pediatric. Accessed 25/07 2019

  20. Shepherd JA, Fan B, Lu Y, Wu XP, Wacker WK, Ergun DL, Levine MA (2012) A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems. Journal of Bone and Mineral Research 27(10):2208–2216.

    Article  PubMed  Google Scholar 

  21. Corder K, Brage S, Mattocks C, Ness A, Riddoch C, Wareham NJ, Ekelund U (2007) Comparison of two methods to assess PAEE during six activities in children. Med Sci Sports Exerc 39(12):2180–2188.

    Article  PubMed  Google Scholar 

  22. Brage S, Brage N, Franks PW, Ekelund U, Wareham NJ (2005) Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur J Clin Nutr 59(4):561–570.

    CAS  Article  PubMed  Google Scholar 

  23. Rowlands AV, Pilgrim EL, Eston RG (2008) Patterns of habitual activity across weekdays and weekend days in 9–11-year-old children. Prev Med 46(4):317–324.

    Article  PubMed  Google Scholar 

  24. Stegle O, Fallert SV, MacKay DJ, Brage S (2008) Gaussian process robust regression for noisy heart rate data. IEEE Trans Biomed Eng 55(9):2143–2151.

    Article  PubMed  Google Scholar 

  25. Lintu N, Tompuri T, Viitasalo A, Soininen S, Laitinen T, Savonen K, Lindi V, Lakka TA (2014) Cardiovascular fitness and haemodynamic responses to maximal cycle ergometer exercise test in children 6-8 years of age. J Sports Sci 32(7):652–659.

    Article  PubMed  Google Scholar 

  26. Brage S, Brage N, Franks PW, Ekelund U, Wong MY, Andersen LB, Froberg K, Wareham NJ (2004) Branched equation modeling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. J Appl Physiol (1985) 96(1):343–351.

    Article  Google Scholar 

  27. Collings PJ, Westgate K, Väistö J, Wijndaele K, Atkin AJ, Haapala EA, Lintu N, Laitinen T, Ekelund U, Brage S, Lakka TA (2017) Cross-sectional associations of objectively-measured physical activity and sedentary time with body composition and cardiorespiratory fitness in mid-childhood: the PANIC Study. Sports Med 47(4):769–780.

    Article  PubMed  Google Scholar 

  28. Janz KF, Rao S, Baumann HJ, Schultz JL (2003) Measuring children’s vertical ground reaction forces with accelerometry during walking, running, and jumping: The Iowa Bone Development Study. Pediatr Exerc Sci 15(1):34–43.

    Article  Google Scholar 

  29. Corder K, Brage S, Wareham NJ, Ekelund U (2005) Comparison of PAEE from combined and separate heart rate and movement models in children. Med Sci Sports Exerc 37(10):1761–1767

    Article  Google Scholar 

  30. Tremblay MS, Carson V, Chaput JP (2016) Introduction to the Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab 41(6 Suppl 3):iii–iv.

    Article  PubMed  Google Scholar 

  31. Brage S, Westgate K, Wijndaele K, Godinho J, Griffin S, Wareham N Evaluation of a method for minimizing diurnal information bias in objective sensor data. In: International Conference on Ambulatory Monitoring of Physical Activity and Movement, Massachusetts, USA, 2013.

  32. Arundel P, Ahmed SF, Allgrove J, Bishop NJ, Burren CP, Jacobs B, Mughal MZ, Offiah AC, Shaw NJ, British P, Adolescent Bone G (2012) British Paediatric and Adolescent Bone Group’s position statement on vitamin D deficiency. BMJ 345:e8182.

    CAS  Article  PubMed  Google Scholar 

  33. Institute of Medicine (2011) Committee to review dietary reference intakes for vitamin, d and calcium. The National Academies Collection: Reports funded by National Institutes of Health. National Academies Press (US) National Academy of Sciences., Washington (DC). doi:10.17226/13050

  34. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, Murad MH, Weaver CM, Endocrine S (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930.

    CAS  Article  PubMed  Google Scholar 

  35. Alin A (2010) Multicollinearity. WIREs Comp Stats 2(3):370–374.

    Article  Google Scholar 

  36. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Frederick MM, Huang X, Lu M, Mahboubi S, Hangartner T, Winer KK (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab 96(10):3160–3169.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Roman-Vinas B, Chaput JP, Katzmarzyk PT, Fogelholm M, Lambert EV, Maher C, Maia J, Olds T, Onywera V, Sarmiento OL, Standage M, Tudor-Locke C, Tremblay MS, Group IR (2016) Proportion of children meeting recommendations for 24-hour movement guidelines and associations with adiposity in a 12-country study. Int J Behav Nutr Phys Act 13(1):123.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Migueles JH, Cadenas-Sanchez C, Tudor-Locke C, Löf M, Esteban-Cornejo I, Molina-Garcia P, Mora-Gonzalez J, Rodriguez-Ayllon M, Garcia-Marmol E, Ekelund U, Ortega FB (2019) Comparability of published cut-points for the assessment of physical activity: implications for data harmonization. Scand J Med Sci Sports 29(4):566–574.

    Article  PubMed  Google Scholar 

  39. Lamberg-Allardt C, Brustad M, Meyer HE, Steingrimsdottir L (2013) Vitamin D - a systematic literature review for the 5th edition of the Nordic Nutrition Recommendations. Food Nutr Res 57. doi:

  40. Soininen S, Eloranta AM, Lindi V, Venäläinen T, Zaproudina N, Mahonen A, Lakka TA (2016) Determinants of serum 25-hydroxyvitamin D concentration in Finnish children: the Physical Activity and Nutrition in Children (PANIC) study. Br J Nutr 115(6):1080–1091.

    CAS  Article  PubMed  Google Scholar 

  41. National Nutrition Council (2010) Report of Finnish experts of vitamin D.

  42. National Nutrition Council (2014) Finnish nutrition recommendations – health from food (Suomalaiset ravitsemussuositukset–Terveyttä ruoasta). Helsinki, Juvenes Print

    Google Scholar 

  43. Elhakeem A, Heron J, Tobias JH, Lawlor DA (2020) Physical activity throughout adolescence and peak hip strength in young adults. JAMA Netw Open 3(8):e2013463.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baquet G, Stratton G, Van Praagh E, Berthoin S (2007) Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Prev Med 44(2):143–147.

    Article  PubMed  Google Scholar 

  45. Winzenberg T, Powell S, Shaw KA, Jones G (2011) Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. Br Med J 342:c7254.

    Article  Google Scholar 

  46. Kalkwarf HJ, Zemel BS, Gilsanz V, Lappe JM, Horlick M, Oberfield S, Mahboubi S, Fan B, Frederick MM, Winer K, Shepherd JA (2007) The bone mineral density in childhood study: bone mineral content and density according to age, sex, and race. J Clin Endocrinol Metab 92(6):2087–2099.

    CAS  Article  PubMed  Google Scholar 

  47. Soininen S, Sidoroff V, Lindi V, Mahonen A, Kröger L, Kröger H, Jääskeläinen J, Atalay M, Laaksonen DE, Laitinen T, Lakka TA (2018) Body fat mass, lean body mass and associated biomarkers as determinants of bone mineral density in children 6-8years of age - the Physical Activity and Nutrition in Children (PANIC) study. Bone 108:106–114.

    Article  PubMed  Google Scholar 

Download references


The authors are grateful to all the children and their parents for participating in the PANIC study. The authors are also indebted to the members of the PANIC research team for their skillful contribution in performing the study. The authors would like to acknowledge Stefanie Hollidge from MRC Epidemiology Unit, University of Cambridge, for her assistance in processing the physical activity data.

Availability of data and material

The datasets analysed during the current study are available from the corresponding author on reasonable request.


This work was financially supported by grants from Ministry of Social Affairs and Health of Finland, Ministry of Education and Culture of Finland, Finnish Innovation Fund Sitra, Social Insurance Institution of Finland, Finnish Cultural Foundation, Juho Vainio Foundation, Foundation for Paediatric Research, Doctoral Programs in Public Health, Paavo Nurmi Foundation, Paulo Foundation, Diabetes Research Foundation, The Finnish Medical Society Duodecim, Orion Research Foundation sr, Research Committee of the Kuopio University Hospital Catchment Area (State Research Funding), Kuopio University Hospital (previous state research funding (EVO), funding number 5031343) and the city of Kuopio. S. B. and K. W. were supported by the UK Medical Research Council (MC_UU_12015/3) and the NIHR Cambridge Biomedical Research Centre (IS-BRC-1215-20014).

Author information

Authors and Affiliations


Corresponding author

Correspondence to D. Vlachopoulos.

Ethics declarations

Ethics approval and consent to participate

The study was conducted according to the ethical guidelines of the Declaration of Helsinki. The study protocol was approved by the Research Ethics Committee of the Hospital District of Northern Savo. The parents or caregivers of the children gave their written informed consent, and the children provided their assent to participation.

Consent for publication

Not applicable.

Conflicts of interest


Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Constable, A., Vlachopoulos, D., Barker, A. et al. The independent and interactive associations of physical activity intensity and vitamin D status with bone mineral density in prepubertal children: the PANIC Study. Osteoporos Int 32, 1609–1620 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Accelerometery
  • Bone mass
  • Childhood
  • DXA
  • Growth