Skip to main content

Advertisement

Log in

Peri-operative derangement in liver function tests in older patients with neck of femur fracture

  • Concise Clinical Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Neck of femur fracture is a common consequence of falls in the elderly with a large burden of morbidity and mortality. Derangement in liver function tests (LFTs) is frequently seen in elderly people with neck of femur (NOF) fracture in the peri-operative period and can indicate serious and treatable underlying pathology as well as prognosis.

On admission, raised alkaline phosphatase (ALP) levels with normal gamma-glutamyl transferase (GGT) suggest underlying bone pathology such as osteomalacia or Paget’s disease but do not confirm or exclude osteoporosis. ALP can also be raised by non-bone pathology such as congestive cardiac failure and chronic kidney disease. LFT derangement in cardiac failure is associated with poorer prognosis. Post-operatively, ALP levels rise after the first week with a peak at 3–4 weeks and then fall thereafter. The rate at which they fall may help indicate bone healing in trochanteric fractures. Derangement in other LFTs is commonly due to hepatic injury; causes include trauma, alcohol, and viral hepatitis. There are also iatrogenic causes including surgery and commonly prescribed medication such as beta-lactam antibiotics, non-steroidal anti-inflammatories, and paracetamol.

The differential diagnosis for deranged LFTs in the elderly peri-operatively is wide; however, most causes can be elicited through careful history and examination with occasional need for further investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data availability

All drafts and emails involved in this work are available to be viewed on request.

References

  1. Requena G, Abbing-Karahagopian V, Huerta C, De Bruin ML, Alvarez Y, Miret M et al (2014) Incidence rates and trends of hip/femur fractures in five European countries: comparison using E-healthcare records databases. Calcif Tissue Int 94:580–589. https://doi.org/10.1007/s00223-014-9850-y

    Article  CAS  PubMed  Google Scholar 

  2. Leung KS, Fung KP, Sher AHL, Li CK, Lee KM (1992) Plasma bone-specific alkaline phosphatase as an indicator of osteoblastic activity. J bone joint Surg 75: 288-292. doi/abs/https://doi.org/10.1302/0301-620X.75B2.8444951

  3. Nakagawa H, Kamimura M, Takahara K, Hashidate H, Kawaguchi A, Uchiyama S, Miyasaka T (2006) Changes in total alkaline phosphatase level after hip fracture: comparison between femoral neck and trochanter fractures. J Orthop Sci 11:135–139. https://doi.org/10.1007/s00776-005-0990-9

    Article  CAS  PubMed  Google Scholar 

  4. Hosking DJ (1978) Changes in serum alkaline phosphatase after femoral fractures. J Bone Joint Surg 60:61–65. https://doi.org/10.1302/0301-620X.60B1.627581

    Article  CAS  Google Scholar 

  5. Sharland DE, Overstall PW (1978) Alkaline phosphatase: changes in serum levels after a fracture. Br Med J 1:620. https://doi.org/10.1136/bmj.1.6113.620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ikegami S, Kamimura M, Nakagawa H, Takahara K, Hashidate H, Uchiyama S, Kato H (2009) Comparison in bone turnover markers during early healing of femoral neck fracture and trochanteric fracture in elderly patients. Orthop Rev (Pavia) 1(2):e21. https://doi.org/10.4081/or.2009.e21

    Article  Google Scholar 

  7. Nilsson BE, Westlin NE (1972) The plasma concentration of alkaline phosphatase, phosphorus and calcium following femoral neck fracture. Acta Orthop Scand 43(6):504–510. https://doi.org/10.3109/17453677208991272

    Article  CAS  PubMed  Google Scholar 

  8. Hoikka V, Alhava EM, Savolainen K, Parviainen M (1982) Osteomalacia in fractures of the proximal femur. Acta Orthop Scand 53(2):255–260. https://doi.org/10.3109/17453678208992212

    Article  CAS  PubMed  Google Scholar 

  9. Van Staa TP, Selby P, Leufkens HGM, Lyles K, Sprafka JM, Cooper C (2002) Incidence and natural history of Paget’s disease of bone in England and Wales. J Bone Miner Res 17:465–471. https://doi.org/10.1359/jbmr.2002.17.3.465

    Article  PubMed  Google Scholar 

  10. Al Nofal AA, Altayar O, BenKhadra K, Qasim Agha OQ, Asi N, Nabhan M et al (2015) Bone turnover markers in Paget’s disease of the bone: a systematic review and meta-analysis. Osteoporos Int 26(7):1875–1891. https://doi.org/10.1007/s00198-015-3095-0

    Article  PubMed  Google Scholar 

  11. Healey JH, Brown HK (2000) Complications of bone metastases: surgical management. Cancer: Interdisciplinary International Journal of the American Cancer Society 88(S12):2940–2951. https://doi.org/10.1002/1097-0142(20000615)88:12+<2940::aid-cncr10>3.0.co;2-w

    Article  CAS  Google Scholar 

  12. Pecherstorfer M, Zimmer-Roth I, Schilling T, Woitge HW, Schmidt H, Baumgartner G, Thiébaud D, Ludwig H, Seibel MJ (1995) The diagnostic value of urinary pyridinium cross-links of collagen, serum total alkaline phosphatase, and urinary calcium excretion in neoplastic bone disease. J Clin Endocrinol Metab 80(1):97–103. https://doi.org/10.1210/jcem.80.1.7829646

    Article  CAS  PubMed  Google Scholar 

  13. Demers LM, Costa L, Lipton A (2000) Biochemical markers and skeletal metastases. Cancer 88:2919–2926. https://doi.org/10.1002/1097-0142(20000615)88:12+<2919::aid-cncr7>3.0.co;2-z

    Article  CAS  PubMed  Google Scholar 

  14. Saraç F, Saygılı F (2007) Causes of high bone alkaline phosphatase. Biotechnol Biotechnol Equip 21(2):194–197. https://doi.org/10.1080/13102818.2007.10817444

    Article  Google Scholar 

  15. Shipman KE, Holt AD, Gama R (2013) Interpreting an isolated raised serum alkaline phosphatase level in an asymptomatic patient. BMJ 346:f976. https://doi.org/10.1136/bmj.f976

    Article  PubMed  Google Scholar 

  16. Hodkinson HM, McPherson CK (1973) Alkaline phosphatase in a geriatric inpatient population. Age Ageing 2:28–33. https://doi.org/10.1093/ageing/2.1.28

    Article  CAS  PubMed  Google Scholar 

  17. Biver E, Chopin F, Coiffier G, Brentano TF, Bouvard B, Garnero P, Cortet B (2012) Bone turnover markers for osteoporotic status assessment? A systematic review of their diagnosis value at baseline in osteoporosis. Joint Bone Spine 79(1):20–25. https://doi.org/10.1016/j.jbspin.2011.05.003

    Article  PubMed  Google Scholar 

  18. Whitfield JB (2001) Gamma glutamyl transferase. Crit Rev Clin Lab Sci 38(4):263–355. https://doi.org/10.1080/20014091084227

    Article  CAS  PubMed  Google Scholar 

  19. Ndrepepa G, Kastrati A (2016) Gamma-glutamyl transferase and cardiovascular disease. Ann Transl Med 4(24):481. https://doi.org/10.21037/atm.2016.12.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mukamal KJ, Mittleman MA, Longstreth WT, Newman AB, Fried LP, Siscovick DS (2004) Self-reported alcohol consumption and falls in older adults: cross-sectional and longitudinal analyses of the cardiovascular health study. J Am Geriatr Soc 52(7):1174–1179. https://doi.org/10.1111/j.1532-5415.2004.52318.x

    Article  PubMed  Google Scholar 

  21. Felson DT, Kiel DP, Anderson JJ, Kannel WB (1988) Alcohol consumption and hip fractures: the Framingham heart study. Am J Epidemiol 128(5):1102–1110. https://doi.org/10.1093/oxfordjournals.aje.a115052

    Article  CAS  PubMed  Google Scholar 

  22. Cheraghi Z, Doosti-Irani A, Almasi-Hashiani A, Baigi V, Mansournia N, Etminan M, Mansournia MA (2019) The effect of alcohol on osteoporosis: a systematic review and meta-analysis. Drug Alcohol Depend 197:197–202. https://doi.org/10.1016/j.drugalcdep.2019.01.025

    Article  CAS  PubMed  Google Scholar 

  23. Lucey MR, Mathurin P, Morgan TR (2009) Alcoholic hepatitis. N Engl J Med 360:2758–2769. https://doi.org/10.1056/NEJMra0805786

    Article  CAS  PubMed  Google Scholar 

  24. Jansen S, Bhangu J, de Rooij S, Daams J, Kenny RA, van der Velde N (2016) The association of cardiovascular disorders and falls: a systematic review. J Am Med Dir Assoc 17:193–199. https://doi.org/10.1016/j.jamda.2015.08.022

    Article  PubMed  Google Scholar 

  25. Van Deursen VM, Damman K, Hillege HL, van Beek AP, van Veldhuisen DJ, Voors AA (2009) Abnormal liver function in relation to hemodynamic profile in heart failure patients. J Card Fail 16(1):84–90. https://doi.org/10.1016/j.cardfail.2009.08.002

    Article  PubMed  Google Scholar 

  26. Tan K, Bang S, Vijayan A, Chiu M (2009) Hepatic enzymes have a role in the diagnosis of hepatic injury after blunt abdominal trauma. Injury 40:978–983. https://doi.org/10.1016/j.injury.2009.02.023

    Article  PubMed  Google Scholar 

  27. Gringauz I, Weismann J, Justo D, Adunsky A, Segal G (2018) Alanine aminotransferase blood levels and rehabilitation outcome in older adults following hip fracture surgery. Int J Rehabil Res 41(1):41–46. https://doi.org/10.1097/MRR.0000000000000258

    Article  PubMed  Google Scholar 

  28. Oh RC, Hustead TR, Ali SM, Pantsari MW (2017) Mildly elevated liver transaminase levels: causes and evaluation. Am Fam Physician 96(11):709–715

    PubMed  Google Scholar 

  29. Frith J, Kerr S, Robinson L, Elliott CS, Wilton K, Jones DEJ, Day CP, Newton JL (2012) Falls and fall-related injury are common in older people with chronic liver disease. Dig Dis Sci 57:2697–2702. https://doi.org/10.1007/s10620-012-2193-5

    Article  PubMed  Google Scholar 

  30. Román E, Córdoba J, Torrens M, Torras X, Villanueva C, Vargas V, Guarner C, Soriano G (2011) Minimal hepatic encephalopathy is associated with falls. Am J Gastroenterol 106(3):476–482. https://doi.org/10.1038/ajg.2010.413

    Article  PubMed  Google Scholar 

  31. David S, Hamilton JP (2010) Drug-induced liver injury. US Gastroenterol Hepatol Rev 6:73–80

    PubMed  PubMed Central  Google Scholar 

  32. Lescot T, Karvellas C, Beaussier M, Magder S (2012) Acquired liver injury in the intensive care unit. Anesthesiology 117(4):898–904. https://doi.org/10.1097/ALN.0b013e318266c6df

    Article  PubMed  Google Scholar 

  33. Frink EJ, Brown BR. Postoperative hepatic dysfunction (1992) Baillieres Clin Anaesthesiol 6(40): 931–952. https://doi.org/10.1016/S0950-3501(05)80314-9

  34. Stoelting RK, Blitt CD, Cohen PJ, Merin RG (1987) Isoflurane and postoperative hepatic dysfunction. Anesth Analg 66(2):147–153

    Article  CAS  Google Scholar 

  35. Matheson JA, Matheson JAH, Quinlan J (2018) Abnormality of liver function tests in patients following elective hip and knee joint arthroplasty. Orthop Proc 94:22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Powell.

Ethics declarations

Conflicts of interest

None.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

We, Dr. James Powell and Dr. Atef Michael, consent to the publication of this work by Osteoporosis International.

Signed:

James Powell

Atef Michael

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powell, J., Michael, A. Peri-operative derangement in liver function tests in older patients with neck of femur fracture. Osteoporos Int 32, 1027–1030 (2021). https://doi.org/10.1007/s00198-021-05827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-021-05827-4

Keywords

Navigation