Skip to main content

Advertisement

Log in

Risk factors for imminent fractures: a substudy of the FRISBEE cohort

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Multiple factors increase the risk of an imminent fracture, including a recent fracture, older age, osteoporosis, comorbidities, and the fracture site. These findings could be a first step in the development of a model to predict an imminent fracture and select patients most at need of immediate treatment.

Introduction

The risk of a recurrent fragility fracture is maximal during the first 2 years following an incident fracture. In this prospective cohort study, we looked at the incidence of recurrent fractures within 2 years after a first incident fracture and we assessed independent clinical risk factors (CRFs) increasing this imminent fracture risk.

Methods

A total of 3560 postmenopausal women recruited from 2007 to 2013 were surveyed yearly for the occurrence of fragility fractures. We identified patients who sustained a fracture during the first 2 years following a first incident fragility fracture. We quantified the risk of a new fracture and assessed independent CRFs, associated with an imminent fracture at various sites.

Results

A recent fracture was a significant CRF for an imminent fracture (OR (95% CI): 3.7 (2.4–5.7) [p < 0.0001]). The incidence of an imminent fracture was higher in subjects above 80 years (p < 0.001). Other CRFs highly predictive in a multivariate analysis were osteoporosis diagnosis (p < 0.01), a central fracture as the index fracture (p < 0.01), and the presence of comorbidities (p < 0.05), with likelihood ratios of 1.9, 1.9, and 2.2, respectively. An imminent fracture was better predicted by a central fracture (p < 0.01) than by a major osteoporotic fracture. The hazard ratio was the highest for a central fracture.

Conclusion

In patients with a recent fracture, older age, osteoporosis, comorbidities, and fracture site were associated with an imminent fracture risk. These findings could be a first step in the development of a model to predict an imminent fracture and select patients most at need of immediate and most appropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Roux C, Briot K (2017) Imminent fracture risk. Osteoporos Int 28:1765–1769

    Article  CAS  PubMed  Google Scholar 

  2. Banefelt J, Åkesson KE, Spångéus A, Ljunggren O, Karlsson L, Ström O, Ortsäter G, Libanati C, Toth E (2019) Risk of imminent fracture following a previous fracture in a Swedish database study. Osteoporos Int 30:601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kanis JA, Harvey NC, Johansson H, Liu E, Vandenput L et al (2020) A decade of FRAX: how has it changed the management of osteoporosis? Aging Clin Exp Res 32:187–196

    Article  PubMed  Google Scholar 

  4. Eastell R, Rosen CJ, Black DM, Cheung AM (2019) Pharmacological management of osteoporosis in postmenopausal women: an endocrine society* clinical practice guideline. J Clin Endocrinol Metab 104:1595–1622

    Article  PubMed  Google Scholar 

  5. McCloskey EV, Johansson H, Oden A et al (2012) Denosumab reduces the risk of all osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res 27:1480–1486

    Article  CAS  PubMed  Google Scholar 

  6. Liu Z, Li CW, Mao YF, Liu K, Liang BC, Wu LG, Shi XL (2019) Study on zoledronic acid reducing acute bone loss and fracture rates in elderly postoperative patients with intertrochanteric fractures. Orthop Surg 11(3):380–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Black DM, Reid IR, Cauley JA, Cosman F, Leung PC, Lakatos P, Lippuner K, Cummings SR, Hue TF, Mukhopadhyay A, Tan M, Aftring RP, Eastell R (2015) The effect of 6 versus 9 years of zoledronic acid treatment in osteoporosis: a randomized second extension to the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res 30(5):934–944

    Article  CAS  PubMed  Google Scholar 

  8. Kendler DL, Marin F, Zerbini CAF, Russo LA, Greenspan SL, Zikan V, Bagur A, Malouf-Sierra J, Lakatos P, Fahrleitner-Pammer A, Lespessailles E, Minisola S, Body JJ, Geusens P, Möricke R, López-Romero P (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391:230–240

    Article  CAS  PubMed  Google Scholar 

  9. Saag KG, Petersen J, Brandi ML, Karaplis AC, Lorentzon M, Thomas T, Maddox J, Fan M, Meisner PD, Grauer A (2017a) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427

    Article  CAS  PubMed  Google Scholar 

  10. Kanis JA, Johansson H, Oden A et al (2018) Characteristics of recurrent fractures. Osteoporos Int 29:1747–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Weycker D, Edelsberg J, Barron R, Atwood M, Oster G, Crittenden DB, Grauer A (2017) Predictors of near-term fracture in osteoporotic women aged ≥65 years, based on data from the study of osteoporotic fractures. Osteoporos Int 28:2565–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnell O, Kanis JA, Oden A et al (2004a) Fracture risk following an osteoporotic fracture. Osteoporos Int 15:175–179

    Article  CAS  PubMed  Google Scholar 

  13. Hansen L, Petersen KD, Eriksen SA, Langdahl BL, Eiken PA, Brixen K, Abrahamsen B, Jensen JEB, Harsløf T, Vestergaard P (2015) Subsequent fracture rates in a nationwide population-based cohort study with a 10-year perspective. Osteoporos Int 26:513–519

    Article  CAS  PubMed  Google Scholar 

  14. Kanis JA, Johnell O, De Laet C et al (2004) A metaanalysis of previous fracture and subsequent fracture risk. Bone 35(2):375–382

    Article  CAS  PubMed  Google Scholar 

  15. Iconaru L, Moreau M, Kinnard V, Baleanu F, Paesmans M, Karmali R, Body JJ, Bergmann P (2019) Does the prediction accuracy of osteoporotic fractures by BMD and clinical risk factors vary with fracture site? JBMR Plus 3(12):e10238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johansson H, Siggeirsdottir K, Harvey NC, Oden A, Gudnason V et al (2017) Imminent risk of fracture after fracture. Osteoporos Int 28:775–780

    Article  CAS  PubMed  Google Scholar 

  17. Pinedo-Villanueva R, Charokopou M, Toth E, Donnelly K, Cooper C, Prieto-Alhambra D, Libanati C, Javaid MK (2019) Imminent fracture risk assessments in the United Kingdom FLS setting: Implications and challenges. Arch Osteoporos 14(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bonafede M, Shi N, Barron R, Li X, Crittenden DB, Chandler D (2016) Predicting imminent risk for fracture in patients aged 50 or older with osteoporosis using US claims data. Arch Osteoporos 11(1):26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kanis JA, Johansson H, Harvey NC, Gudnason V, Sigurdsson G, Siggeirsdottir K, Lorentzon M, Liu E, Vandenput L, McCloskey EV (2020b) Adjusting conventional FRAX estimates of fracture probability according to the recency of sentinel fractures. Osteoporos Int 31(10):1817–1828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borgen TT, Bjørnerem A, Solberg LB, Andreasen C, Brunborg C, Stenbro MB, Hübschle LM, Froholdt A, Figved W, Apalset EM, Gjertsen JE, Basso T, Lund I, Hansen AK, Stutzer JM, Omsland TK, Nordsletten L, Frihagen F, Eriksen EF (2019) Post-fracture risk assessment: target the centrally sited fractures first! A substudy of NoFRACT. J Bone Miner Res 34(11):2036–2044

    Article  CAS  PubMed  Google Scholar 

  21. Kinnard V, Baleanu F, Iconaru L, Moreau M, Paesmans M, Body JJ, Bergmann P (2020) Postfracture risk assessment: target the centrally sited fractures first! A substudy of NoFRACT. J Bone Miner Res 35(4):827–828

    Article  PubMed  Google Scholar 

  22. Cappelle SI, Ramon I, Dekelver C, Rozenberg S, Baleanu F, Karmali R, Rubinstein M, Tondeur M, Moreau M, Paesmans M, Bergmann P, Body JJ (2017) Distribution of clinical risk factors for fracture in a Brussels cohort of postmenopausal women: the FRISBEE study and comparison with other major cohort studies. Maturitas 106:1–7

    Article  CAS  PubMed  Google Scholar 

  23. Baleanu F, Moreau M, Kinnard V, Iconaru L, Karmali R et al (2020a) What is the validity of self-reported fractures? Bone Rep 1(12):100256

    Article  Google Scholar 

  24. Baleanu F, Moreau M, Kinnard V, Iconaru L, Karmali R, Rozenberg S, Rubinstein M, Paesmans M, Bergmann P, Body JJ (2020b) Underevaluation of fractures by self-report: an analysis from the FRISBEE cohort. Arch Osteoporos 15(1):61

    Article  PubMed  Google Scholar 

  25. Armitage P, Berry G (1994) Statistical methods in medical research, 3rd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  26. Toth E, Banefelt J, Åkesson K, Spångeus A, Ortsäter G, Libanati C (2020) History of previous fracture and imminent fracture risk in Swedish women aged 55 to 90 years presenting with a fragility fracture. J Bone Miner Res 35(5):861–868

    Article  PubMed  Google Scholar 

  27. Kanis JA, Harvey NC, McCloskey E, Bruyère O, Veronese N, Lorentzon M, Cooper C, Rizzoli R, Adib G, al-Daghri N, Campusano C, Chandran M, Dawson-Hughes B, Javaid K, Jiwa F, Johansson H, Lee JK, Liu E, Messina D, Mkinsi O, Pinto D, Prieto-Alhambra D, Saag K, Xia W, Zakraoui L, Reginster JY (2020a) Algorithm for the management of patients at low/middle/high risk of osteoporotic fracture: a global perspective. Osteoporos Int 31:1–12

    Article  CAS  PubMed  Google Scholar 

  28. Crandall CJ, Hovey KM, Cauley JA, Andrews CA, Curtis JR, Wactawski-Wende J, Wright NC, Li W, LeBoff MS (2015) Wrist fracture and risk of subsequent fracture: findings from the Women’s Health Initiative Study. J Bone Miner Res 30(11):2086–2095

    Article  PubMed  Google Scholar 

  29. Chen W, Simpson JM, March LM, Blyth FM, Bliuc D, Tran T, Nguyen TV, Eisman JA, Center JR (2018) Co-morbidities only account for a small proportion of excess mortality after fracture: a record linkage study of individual fracture types. J Bone Miner Res 33(5):795–802

    Article  PubMed  Google Scholar 

  30. Johnell O, Kanis JA, Oden A et al (2004b) Mortality after osteoporotic fractures. Osteoporos Int 15(1):38–42

    Article  CAS  PubMed  Google Scholar 

  31. Shauver MJ, Zhong L, Chung KC (2015) Mortality after distal radial fractures in the Medicare population. J Hand Surg Eur 40(8):805–811

    Article  CAS  Google Scholar 

  32. Hernlund E, Svedbom A, Ivergård M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Iconaru L, Smeys C, Baleanu F, Kinnard V, Moreau M, Cappelle S, Surquin M, Rubinstein M, Rozenberg S, Paesmans M, Karmali R, Bergmann P, Body JJ (2020) Osteoporosis treatment gap in a prospective cohort of volunteer women. Osteoporos Int 31(7):1377–1382

    Article  CAS  PubMed  Google Scholar 

  34. Liberman UA, Weiss SR, Bröll J, Minne HW, Quan H, Bell NH, Rodriguez-Portales J, Downs RW Jr, Dequeker J, Favus M, Seeman E, Recker RR, Capizzi T, Santora AC, Lombardi A, Shah RV, Hirsch LJ, Karpf DB (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333(22):1437–1443

    Article  CAS  PubMed  Google Scholar 

  35. Chesnut CH 3rd, Skag A, Christiansen C et al (2004) Oral ibandronate osteoporosis vertebral fracture trial in North America and Europe (BONE). Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19(8):1241–1249

    Article  CAS  PubMed  Google Scholar 

  36. Harris ST, Watts NB, Genant HK, McKeever C, Hangartner T, Keller M, Chesnut CH 3rd, Brown J, Eriksen EF, Hoseyni MS, Axelrod DW, Miller PD (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Risedronate Therapy (VERT) Study Group. JAMA 282(14):1344–1352

    Article  CAS  PubMed  Google Scholar 

  37. Cummings SR, San Martin J et al (2007) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361(8):756–765

    Article  Google Scholar 

  38. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, HORIZON Pivotal Fracture Trial (2007a) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822

    Article  CAS  PubMed  Google Scholar 

  39. Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR, HORIZON Pivotal Fracture Trial (2007b) HORIZON Pivotal Fracture Trial. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–1822

    Article  CAS  PubMed  Google Scholar 

  40. Miller PD, Hattersley G, Riis BJ et al (2017) ACTIVE Study Investigators. Effect of abaloparatide vs placebo on new vertebral fractures in postmenopausal women with osteoporosis: a randomized clinical trial. JAMA 316(7):722–733

    Article  Google Scholar 

  41. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543

    Article  CAS  PubMed  Google Scholar 

  42. Body JJ, Marin F, Kendler DL, Zerbini CAF, López-Romero P, Möricke R, Casado E, Fahrleitner-Pammer A, Stepan JJ, Lespessailles E, Minisola S, Geusens P (2020) Efficacy of teriparatide compared with risedronate on FRAX®-defined major osteoporotic fractures: results of the VERO clinical trial. Osteoporos Int 31:1935–1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The FRISBEE study is supported by CHU Brugmann and IRIS-Recherche.

Author information

Authors and Affiliations

Authors

Contributions

IL, BJJ, BP, and KV designed the study. MM did the statistical analyses. IL wrote the first draft of the manuscript. IL, BJJ, BP, KV, and BF interpreted the findings. IL, BJJ, BP, MA, SM, BF, KR, and PM revised subsequent versions of the manuscript. All authors read and approved the final version of the paper. IL accepts responsibility for the integrity of the data analyses.

Corresponding author

Correspondence to L. Iconaru.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. J. Body and P. Bergmann jointly share the last authorship.

Supporting information

ESM 1

(DOCX 18 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iconaru, L., Moreau, M., Baleanu, F. et al. Risk factors for imminent fractures: a substudy of the FRISBEE cohort. Osteoporos Int 32, 1093–1101 (2021). https://doi.org/10.1007/s00198-020-05772-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05772-8

Keywords

Navigation