Skip to main content
Log in

An in-depth study of the associations between osteoarthritis- and osteoporosis-related phenotypes at different skeletal locations

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The relationship between OA and osteoporosis characteristics remains controversial. This study revealed that age-adjusted hand OA is associated with lower hand/arm BMD levels. Wrist fracture occurrence is associated with increased OA hand scores and low arm BMD. Conversely, age-adjusted knee and spine OA is associated with high spine, hip, and total BMDs.

Introduction

Osteoarthritis (OA) and osteoporosis are two common musculoskeletal diseases which contribute a high burden of disability, yet assessments of their relationship remains controversial. The aim of this study was to clarify the association between bone mineral densities (BMD) of the hand, arm, spine, hip, and total body, and OA of the hand and knee and lumbar disc degeneration in two different ethnic groups.

Methods

Radiographic assessments of the hand, knee, and spine were collected and coded for joint space narrowing, osteophytes, and the Kellgren-Lawrence score from Chuvashian (n = 1504) and British (n = 2280) individuals. BMD measurements of standard skeletal sites were estimated by dual X-ray absorptiometry. Age- and familial-adjusted regression analyses were conducted to determine associations.

Results

Knee OA affection was positively associated with elevated hip, spine, and total body BMD levels (p < 0.001). Additionally, disc degeneration phenotypes showed significant positive associations with the hip, spine, and total BMD (p < 0.001). However, increased hand OA scores was significantly negatively correlated with arm and hand BMD measurements in males and females in both samples (p < 0.001). Additionally, higher hand OA scores were significantly associated with wrist fracture.

Conclusions

We discovered a clear pattern of association between hand OA and low hand and arm BMD, with increased risk of wrist fracture, as well as reproducing previous associations between knee and spine OA and elevated spine, hip, and total body BMD. It appears that hand OA manifests differently in comparison to hip and knee OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

FMI:

Fat mass index

JSN:

Joint space narrowing

JSN_28:

Joint space narrowing 28 hand joint scores

KL:

Kellgren-Lawrence

KL_28:

Kellgren-Lawrence 28 hand joint scores

LDD:

Lower disc degeneration

LMI:

Lean mass index

MCI:

Metacarpal cortical indices

OA:

Osteoarthritis

OP:

Osteoporosis

OSP:

Osteophyte

OSP_28:

Osteophyte 28 hand joint scores

OTD radius-ulna BMD:

One-third distal averaged radius and ulna bone mineral densities

RHOA:

Radiographic hand osteoarthritis

RKOA:

Radiographic knee osteoarthritis

References

  1. Blake GM, Fogelman I (2007) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83:509–517. https://doi.org/10.1136/pgmj.2007.057505

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sowers M, Lachance L, Jamadar D, Hochberg MC, Hollis B, Crutchfield M, Jannausch ML (1999) The associations of bone mineral density and bone turnover markers with osteoarthritis of the hand and knee in pre- and perimenopausal women. Arthritis Rheum 42:483–489. https://doi.org/10.1002/1529-0131(199904)42:3<483::AID-ANR13>3.0.CO;2-O

    Article  CAS  PubMed  Google Scholar 

  3. Hart DJ, Cronin C, Daniels M, Worthy T, Doyle DV, Spector TD (2002) The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford Study. Arthritis Rheum 46:92–99. https://doi.org/10.1002/1529-0131(200201)46:1<92::AID-ART10057>3.0.CO;2-#

    Article  PubMed  Google Scholar 

  4. Im G-I, Kwon O-J, Kim CH (2014) The relationship between osteoarthritis of the knee and bone mineral density of proximal femur: a cross-sectional study from a Korean population in women. Clin Orthop Surg 6:420–425. https://doi.org/10.4055/cios.2014.6.4.420

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arden NK, Nevitt MC, Lane NE, Gore LR, Hochberg MC, Scott JC, Pressman AR, Cummings SR, for the STUDY OF OSTEOPOROTIC FRACTURES RESEARCH GROUP (1999) Osteoarthritis and risk of falls, rates of bone loss, and osteoporotic fractures. Arthritis Rheum 42:1378–1385. https://doi.org/10.1002/1529-0131(199907)42:7<1378::AID-ANR11>3.0.CO;2-I

    Article  CAS  PubMed  Google Scholar 

  6. Stewart A, Black AJ (2000) Bone mineral density in osteoarthritis. Curr Opin Rheumatol 12:464–467

    Article  CAS  Google Scholar 

  7. Hardcastle SA, Dieppe P, Gregson CL, Davey Smith G, Tobias JH (2015) Osteoarthritis and bone mineral density: are strong bones bad for joints? Bonekey Rep 4:624. https://doi.org/10.1038/bonekey.2014.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. El-Sherif HE, Kamal R, Moawyah O (2008) Hand osteoarthritis and bone mineral density in postmenopausal women; clinical relevance to hand function, pain and disability. Osteoarthr Cartil 16:12–17. https://doi.org/10.1016/J.JOCA.2007.05.011

    Article  CAS  Google Scholar 

  9. Zhang Y, Hannan MT, Chaisson CE, McAlindon T, Evans SR, Aliabadi P, Levy D, Felson DT (2000) Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham Study. J Rheumatol 27:1032–1037

    CAS  PubMed  Google Scholar 

  10. Nevitt MC, Zhang Y, Javaid MK, Neogi T, Curtis JR, Niu J, McCulloch CE, Segal NA, Felson DT (2010) High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study. Ann Rheum Dis 69:163–168. https://doi.org/10.1136/ARD.2008.099531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hart DJ, Mootoosamy I, Doyle DV, Spector TD (1994) The relationship between osteoarthritis and osteoporosis in the general population: the Chingford Study. Ann Rheum Dis 53:158–162. https://doi.org/10.1136/ard.53.3.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mattei TA (2013) Osteoporosis delays intervertebral disc degeneration by increasing intradiscal diffusive transport of nutrients through both mechanical and vascular pathophysiological pathways. Med Hypotheses 80:582–586. https://doi.org/10.1016/J.MEHY.2013.01.030

    Article  CAS  PubMed  Google Scholar 

  13. Livshits G, Ermakov S, Popham M, MacGregor AJ, Sambrook PN, Spector TD, Williams FMK (2010) Evidence that bone mineral density plays a role in degenerative disc disease: the UK Twin Spine study. Ann Rheum Dis 69:2102–2106. https://doi.org/10.1136/ard.2010.131441

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ichchou L, Allali F, Rostom S, Bennani L, Hmamouchi I, Abourazzak FZ, Khazzani H, el Mansouri L, Abouqal R, Hajjaj-Hassouni N (2010) Relationship between spine osteoarthritis, bone mineral density and bone turn over markers in post menopausal women. BMC Womens Health 10:25. https://doi.org/10.1186/1472-6874-10-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pye SR, Reid DM, Adams JE, Silman AJ, O'Neill TW (2006) Radiographic features of lumbar disc degeneration and bone mineral density in men and women. Ann Rheum Dis 65:234–238. https://doi.org/10.1136/ARD.2005.038224

    Article  CAS  PubMed  Google Scholar 

  16. Margulies JY, Payzer A, Nyska M, Neuwirth MG, Floman Y, Robin GC (1996) The relationship between degenerative changes and osteoporosis in the lumbar spine. Clin Orthop Relat Res 324:145–152

    Article  Google Scholar 

  17. Yang Z, Griffith JF, Leung PC, Lee R (2009) Effect of osteoporosis on morphology and mobility of the lumbar spine. Spine (Phila Pa 1976) 34:E115–E121. https://doi.org/10.1097/BRS.0b013e3181895aca

    Article  Google Scholar 

  18. Verdi S, Abbasian G, Bowyer RCE, et al. TwinsUK: The UK Adult Twin Registry Update. https://doi.org/10.1017/thg.2019.65

  19. Livshits G, Karasik D, Kobyliansky E (2002) Complex segregation analysis of the radiographic phalanges bone mineral density and their age-related changes. J Bone Miner Res 17:152–161. https://doi.org/10.1359/jbmr.2002.17.1.152

    Article  PubMed  Google Scholar 

  20. King’s College London TwinsUK. http://www.twinsuk.ac.uk/twinzone/. Accessed 26 Dec 2018

  21. Richards J, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs J, Hofman A, Pols HAP, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD (2008) Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371:1505–1512. https://doi.org/10.1016/S0140-6736(08)60599-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gulam M, Thornton MM, Hodsman AB, Holdsworth DW (2000) Bone mineral measurement of phalanges: comparison of radiographic absorptiometry and area dual X-ray absorptiometry. Radiology 216:586–591. https://doi.org/10.1148/radiology.216.2.r00au10586

    Article  CAS  PubMed  Google Scholar 

  23. Kalichman L, Kobyliansky E, Malkin I, Yakovenko K, Livshits G (2003) Search for linkage between hand osteoarthritis and 11q 12-13 chromosomal segment. Osteoarthr Cartil 11:561–568. https://doi.org/10.1016/S1063-4584(03)00093-1

    Article  CAS  PubMed  Google Scholar 

  24. Livshits G, Kato BS, Zhai G, Hart DJ, Hunter D, MacGregor AJ, Williams FMK, Spector TD (2007) Genomewide linkage scan of hand osteoarthritis in female twin pairs showing replication of quantitative trait loci on chromosomes 2 and 19. Ann Rheum Dis 66:623–627. https://doi.org/10.1136/ard.2006.060236

    Article  PubMed  Google Scholar 

  25. Zhai G, Hart DJ, Kato BS, et al. Brief report Genetic influence on the progression of radiographic knee osteoarthritis: a longitudinal twin study 1. https://doi.org/10.1016/j.joca.2006.09.004

  26. Kalichman L, Kobyliansky E, Livshits G (2006) Characteristics of joint degeneration in hand osteoarthritis. Joint Bone Spine 73:72–76. https://doi.org/10.1016/J.JBSPIN.2004.05.018

    Article  PubMed  Google Scholar 

  27. Kohn MD, Sassoon AA, Fernando ND (2016) Classifications in brief: Kellgren-Lawrence classification of osteoarthritis. Clin Orthop Relat Res 474:1886–1893. https://doi.org/10.1007/s11999-016-4732-4

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hart DJ, Spector TD (1995) The classification and assessment of osteoarthritis

  29. Wright RW, MARS Group (2014) Osteoarthritis classification scales: interobserver reliability and arthroscopic correlation. J Bone Joint Surg Am 96:1145–1151. https://doi.org/10.2106/JBJS.M.00929

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sambrook PN, MacGregor AJ, Spector TD (1999) Genetic influences on cervical and lumbar disc degeneration: a magnetic resonance imaging study in twins. Arthritis Rheum 42:366–372. https://doi.org/10.1002/1529-0131(199902)42:2<366::AID-ANR20>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  31. Groth D, Hartmann S, Klie S, Selbig J (2013) Principal components analysis. Methods Mol Biol 930:527–547. https://doi.org/10.1007/978-1-62703-059-5_22

    Article  CAS  PubMed  Google Scholar 

  32. Basu A, Mandal A Canonical correlation

  33. Blumenfeld O, Williams FMK, Valdes A, Hart DJ, Malkin I, Spector TD, Livshits G (2014) Association of interleukin-6 gene polymorphisms with hand osteoarthritis and hand osteoporosis. Cytokine 69:94–101. https://doi.org/10.1016/j.cyto.2014.05.012

    Article  CAS  PubMed  Google Scholar 

  34. Haugen IK, Englund M, Aliabadi P, Niu J, Clancy M, Kvien TK, Felson DT (2011) Prevalence, incidence and progression of hand osteoarthritis in the general population: the Framingham Osteoarthritis Study. Ann Rheum Dis 70:1581–1586. https://doi.org/10.1136/ard.2011.150078

    Article  PubMed  Google Scholar 

  35. Hochberg MC, Lethbridge-Cejku M, Tobin JD (2004) Bone mineral density and osteoarthritis: data from the Baltimore Longitudinal Study of Aging. Osteoarthr Cartil 12:45–48. https://doi.org/10.1016/J.JOCA.2003.09.008

    Article  Google Scholar 

  36. Haugen IK, Slatkowsky-Christensen B, Orstavik R, Kvien TK (2007) Bone mineral density in patients with hand osteoarthritis compared to population controls and patients with rheumatoid arthritis. Ann Rheum Dis 66:1594–1598. https://doi.org/10.1136/ard.2006.068940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guler-Yuksel M, Bijsterbosch J, Allaart CF, Meulenbelt I, Kroon HM, Watt I, Lems WF, Kloppenburg M (2011) Accelerated metacarpal bone mineral density loss is associated with radiographic progressive hand osteoarthritis. Ann Rheum Dis 70:1625–1630. https://doi.org/10.1136/ard.2010.144147

    Article  CAS  PubMed  Google Scholar 

  38. Buckland-Wright C (2004) Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthr Cartil 12:10–19. https://doi.org/10.1016/J.JOCA.2003.09.007

    Article  Google Scholar 

  39. Bergink AP, Rivadeneira F, Bierma-Zeinstra SM, Zillikens MC, Ikram MA, Uitterlinden AG, Meurs JBJ (2019) Are bone mineral density and fractures related to the incidence and progression of radiographic osteoarthritis of the knee, hip, and hand in elderly men and women? The Rotterdam Study. Arthritis Rheum 71:361–369. https://doi.org/10.1002/art.40735

    Article  CAS  Google Scholar 

  40. Vestergaard P, Rejnmark L, Mosekilde L (2009) Osteoarthritis and risk of fractures. Calcif Tissue Int 84:249–256. https://doi.org/10.1007/s00223-009-9224-z

    Article  CAS  PubMed  Google Scholar 

  41. Bergink AP, Uitterlinden AG, Van Leeuwen JPTM et al (2005) Bone mineral density and vertebral fracture history are associated with incident and progressive radiographic knee osteoarthritis in elderly men and women: the Rotterdam Study. Bone 37:446–456. https://doi.org/10.1016/J.BONE.2005.05.001

    Article  CAS  PubMed  Google Scholar 

  42. Bergink AP, Van Der Klift M, Hofman A et al (2003) Osteoarthritis of the knee is associated with vertebral and nonvertebral fractures in the elderly: the Rotterdam Study. Arthritis Rheum 49:648–657. https://doi.org/10.1002/art.11380

    Article  PubMed  Google Scholar 

  43. Schneider DL, Bettencourt R, Barrett-Connor E (2006) Clinical utility of spine bone density in elderly women. J Clin Densitom 9:255–260. https://doi.org/10.1016/j.jocd.2006.04.116

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chan MY, Center JR, Eisman JA, Nguyen TV (2014) Bone mineral density and association of osteoarthritis with fracture risk. Osteoarthr Cartil 22:1251–1258. https://doi.org/10.1016/j.joca.2014.07.004

    Article  CAS  Google Scholar 

  45. Funck-Brentano T, Nethander M, Movérare-Skrtic S, Richette P, Ohlsson C (2019) Causal factors for knee, hip, and hand osteoarthritis: a Mendelian randomization study in the UK biobank. Arthritis Rheum 71:1634–1641. https://doi.org/10.1002/art.40928

    Article  CAS  Google Scholar 

  46. Pandya NK, Draganich LF, Mauer A, Piotrowski GA, Pottenger L (2005) Osteoarthritis of the knees increases the propensity to trip on an obstacle. Clin Orthop Relat Res 150–6

  47. Dequeker J, Luyten FP (2000) Editorial bone mass in rheumatoid arthritis bone mass and osteoarthritis

  48. Kamibayashi L, Wyss UP, Cooke TDV, Zee B (1995) Trabecular microstructure in the medial condyle of the proximal tibia of patients with knee osteoarthritis. Bone 17:27–35. https://doi.org/10.1016/8756-3282(95)00137-3

    Article  CAS  PubMed  Google Scholar 

  49. Lane NE (2006) Epidemiology, etiology, and diagnosis of osteoporosis. Am J Obstet Gynecol 194:S3–S11. https://doi.org/10.1016/j.ajog.2005.08.047

    Article  CAS  PubMed  Google Scholar 

  50. Sornay-Rendu E, Cabrera-Bravo J-L, Boutroy S, Munoz F, Delmas PD (2009) Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res 24:737–743. https://doi.org/10.1359/jbmr.081223

    Article  PubMed  Google Scholar 

  51. Masud T, Langley S, Wiltshire P, Doyle DV, Spector TD (1993) Effect of spinal osteophytosis on bone mineral density measurements in vertebral osteoporosis. BMJ 307:172–173

    Article  CAS  Google Scholar 

  52. Gregson CL, Hardcastle SA, Cooper C, Tobias JH (2013) Friend or foe: high bone mineral density on routine bone density scanning, a review of causes and management. Rheumatology 52:968–985. https://doi.org/10.1093/rheumatology/ket007

    Article  CAS  PubMed  Google Scholar 

  53. Karlsson MK, Magnusson H, von Schewelov T et al (2014) Patients with osteoarthritis in all three knee compartments and patients with medial knee osteoarthritis have a phenotype with high bone mass and high fat mass but proportionally low lean mass. Open Orthop J 8:390–396. https://doi.org/10.2174/1874325001408010390

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research is submitted in partial fulfillment of the requirements for the PhD degree in Medical Sciences from the Department of Anatomy and Anthropology, Human Population Research Unit, Sackler Faculty of Medicine, Tel Aviv University.

Funding

This work was supported by Israel Science Foundation (grant no. 2054/19) to GL and the Israeli Ministry of Aliyah and Integration – The Center for Absorption in Science to MK. TwinsUK is funded by the Wellcome Trust, Medical Research Council, European Union, the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Livshits.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasher, M., Williams, F., Freidin, M. et al. An in-depth study of the associations between osteoarthritis- and osteoporosis-related phenotypes at different skeletal locations. Osteoporos Int 31, 2197–2208 (2020). https://doi.org/10.1007/s00198-020-05504-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-020-05504-y

Keywords

Navigation