Effects of isoflavone interventions on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials

Abstract

Summary

Isoflavones have a structure similar to 17β-estradiol, so they may be useful to postmenopausal women in preventing bone loss related to estrogen deficiency. The present study integrated the findings from 63 randomized controlled trials and found that isoflavone interventions may have benefits in the prevention and treatment of menopause-related osteoporosis.

Purpose

This study aimed to determine the efficacy of isoflavone interventions on bone density outcomes and the safety of isoflavone interventions in postmenopausal women by means of systematic review and meta-analysis.

Methods

A systematic search was performed on three databases (PubMed, Scopus, and Cochrane Library). Included studies were limited to randomized controlled trials (RCTs) assessing the effects of isoflavone intervention on bone mineral density (BMD) in postmenopausal women. Mean difference (MD) in BMD or relative risk for adverse outcomes was used as a summary effect measure; pooled-effect estimates were calculated using a random-effects model.

Results

A total of 63 RCTs, involving 6427 postmenopausal women, were included in the meta-analysis. Statistically significant differences in BMD at the last follow-up visit between the two groups (isoflavones vs. control) were found at the lumbar spine (MD = 21.34 mg/cm2, 95% CI = 8.21 to 34.47 mg/cm2, p = 0.001), the femoral neck (MD = 28.88 mg/cm2, 95% CI = 15.05 to 42.71 mg/cm2, p < 0.0001), and the distal radius (MD = 19.27 mg/cm2, 95% CI = 5.65 to 32.89 mg/cm2, p = 0.006). The positive effects in improved BMD were primarily associated with two formulations, i.e., genistein 54 mg/day and ipriflavone 600 mg/day. Isoflavone interventions were generally safe and well tolerated.

Conclusion

Isoflavone interventions, genistein (54 mg/day) and ipriflavone (600 mg/day) in particular, have beneficial effects on BMD outcomes and are safe in postmenopausal women. They may be considered as a complementary or alternative option in the prevention and treatment of menopause-related osteoporosis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795. https://doi.org/10.1001/jama.285.6.785

    Article  Google Scholar 

  2. 2.

    Chen P, Li Z, Hu Y (2016) Prevalence of osteoporosis in China: a meta-analysis and systematic review. BMC Public Health 16:1039. https://doi.org/10.1186/s12889-016-3712-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Hernlund E, Svedbom A, Ivergard M, Compston J, Cooper C, Stenmark J, McCloskey EV, Jonsson B, Kanis JA (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

  4. 4.

    Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Curtis EM, Moon RJ, Harvey NC, Cooper C (2017) The impact of fragility fracture and approaches to osteoporosis risk assessment worldwide. Bone 104:29–38. https://doi.org/10.1016/j.bone.2017.01.024

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Pouresmaeili F, Kamalidehghan B, Kamarehei M, Goh YM (2018) A comprehensive overview on osteoporosis and its risk factors. Ther Clin Risk Manag 14:2029–2049. https://doi.org/10.2147/TCRM.S138000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. 7.

    Barrionuevo P, Kapoor E, Asi N, Alahdab F, Mohammed K, Benkhadra K, Almasri J, Farah W, Sarigianni M, Muthusamy K, al Nofal A, Haydour Q, Wang Z, Murad MH (2019) Efficacy of pharmacological therapies for the prevention of fractures in postmenopausal women: a network meta-analysis. J Clin Endocrinol Metab 104:1623–1630. https://doi.org/10.1210/jc.2019-00192

    Article  PubMed  Google Scholar 

  8. 8.

    Camacho PM, Petak SM, Binkley N, Clarke BL, Harris ST, Hurley DL, Kleerekoper M, Lewiecki EM, Miller PD, Narula HS, Pessah-Pollack R, Tangpricha V, Wimalawansa SJ, Watts NB (2016) American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the diagnosis and treatment of postmenopausal osteoporosis – 2016 – executive summary. Endocr Pract 22:1111–1118. https://doi.org/10.4158/EP161435.ESGL

    Article  PubMed  Google Scholar 

  9. 9.

    Eastell R, Rosen CJ, Black DM, Cheung AM, Murad MH, Shoback D (2019) Pharmacological management of osteoporosis in postmenopausal women: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 104:1595–1622. https://doi.org/10.1210/jc.2019-00221

    Article  Google Scholar 

  10. 10.

    Kanis JA, Cooper C, Rizzoli R, Reginster JY, Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis (ESCEO) and the Committees of Scientific Advisors and National Societies of the International Osteoporosis Foundation (IOF) (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30:3–44. https://doi.org/10.1007/s00198-018-4704-5

    Article  CAS  Google Scholar 

  11. 11.

    Levin VA, Jiang X, Kagan R (2018) Estrogen therapy for osteoporosis in the modern era. Osteoporos Int 29:1049–1055. https://doi.org/10.1007/s00198-018-4414-z

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Tuppurainen M (2012) HT and SERMs in the long-term management of osteoporosis. Minerva Ginecol 64:195–205

    PubMed  CAS  Google Scholar 

  13. 13.

    Krizova L, Dadakova K, Kasparovska J, Kasparovsky T (2019) Isoflavones. Molecules 24:1076. https://doi.org/10.3390/molecules24061076

    Article  PubMed Central  CAS  Google Scholar 

  14. 14.

    Hirattanapun E, Koonrungsesomboon N, Teekachunhatean S (2018) Variability of isoflavone content in soy milk products commercially available in Thailand. J Health Sci Med Res 36:117–126. https://doi.org/10.31584/jhsmr.2018.36.2.5

    Article  Google Scholar 

  15. 15.

    Wang SW, Chen Y, Joseph T, Hu M (2008) Variable isoflavone content of red clover products affects intestinal disposition of biochanin A, formononetin, genistein, and daidzein. J Altern Complement Med 14:287–297. https://doi.org/10.1089/acm.2007.0617

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mei J, Yeung SS, Kung AW (2001) High dietary phytoestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. J Clin Endocrinol Metab 86:5217–5221. https://doi.org/10.1210/jcem.86.11.8040

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Zhang X, Shu XO, Li H, Yang G, Li Q, Gao YT, Zheng W (2005) Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch Intern Med 165:1890–1895. https://doi.org/10.1001/archinte.165.16.1890

    Article  PubMed  Google Scholar 

  18. 18.

    Lambert MNT, Jeppesen PB (2018) Isoflavones and bone health in perimenopausal and postmenopausal women. Curr Opin Clin Nutr Metab Care 21:475–480. https://doi.org/10.1097/MCO.0000000000000513

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Wei P, Liu M, Chen Y, Chen DC (2012) Systematic review of soy isoflavone supplements on osteoporosis in women. Asian Pac J Trop Med 5:243–248. https://doi.org/10.1016/S1995-7645(12)60033-9

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Abdi F, Alimoradi Z, Haqi P, Mahdizad F (2016) Effects of phytoestrogens on bone mineral density during the menopause transition: a systematic review of randomized, controlled trials. Climacteric 19:535–545. https://doi.org/10.1080/13697137.2016.1238451

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Akhlaghi M, Ghasemi Nasab M, Riasatian M, Sadeghi F (2019) Soy isoflavones prevent bone resorption and loss, a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2019.1635078

  22. 22.

    Lambert MNT, Hu LM, Jeppesen PB (2017) A systematic review and meta-analysis of the effects of isoflavone formulations against estrogen-deficient bone resorption in peri- and postmenopausal women. Am J Clin Nutr 106:801–811. https://doi.org/10.3945/ajcn.116.151464

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Liu J, Ho SC, Su YX, Chen WQ, Zhang CX, Chen YM (2009) Effect of long-term intervention of soy isoflavones on bone mineral density in women: a meta-analysis of randomized controlled trials. Bone 44:948–953. https://doi.org/10.1016/j.bone.2008.12.020

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Ricci E, Cipriani S, Chiaffarino F, Malvezzi M, Parazzini F (2010) Soy isoflavones and bone mineral density in perimenopausal and postmenopausal western women: a systematic review and meta-analysis of randomized controlled trials. J Women's Health (Larchmt) 19:1609–1617. https://doi.org/10.1089/jwh.2010.2021

    Article  Google Scholar 

  25. 25.

    Taku K, Melby MK, Takebayashi J, Mizuno S, Ishimi Y, Omori T, Watanabe S (2010) Effect of soy isoflavone extract supplements on bone mineral density in menopausal women: meta-analysis of randomized controlled trials. Asia Pac J Clin Nutr 19:33–42

    PubMed  CAS  Google Scholar 

  26. 26.

    North American Menopause Society (2011) The role of soy isoflavones in menopausal health: report of The North American Menopause Society/Wulf H. Utian Translational Science Symposium in Chicago, IL (October 2010). Menopause 18:732–753. https://doi.org/10.1097/gme.0b013e31821fc8e0

    Article  Google Scholar 

  27. 27.

    EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food) (2015) Scientific opinion on the risk assessment for peri- and post-menopausal women taking food supplements containing isolated isoflavones. EFSA J 13:4246. https://doi.org/10.2903/j.efsa.2015.4246

    Article  CAS  Google Scholar 

  28. 28.

    Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

  29. 29.

    Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, PRISMA-P Group (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. https://doi.org/10.1186/2046-4053-4-1

  30. 30.

    Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernan MA, Hopewell S, Hrobjartsson A, Junqueira DR, Juni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:I4898. https://doi.org/10.1136/bmj.l4898

  31. 31.

    Riley RD, Higgins JP, Deeks JJ (2011) Interpretation of random effects meta-analyses. BMJ 342:d549. https://doi.org/10.1136/bmj.d549

    Article  PubMed  Google Scholar 

  32. 32.

    Sterne JA, Egger M (2001) Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol 54:1046–1055. https://doi.org/10.1016/s0895-4356(01)00377-8

    Article  PubMed  CAS  Google Scholar 

  33. 33.

    Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  CAS  Google Scholar 

  34. 34.

    Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. 35.

    Warriner AH, Patkar NM, Curtis JR, Delzell E, Gary L, Kilfore M, Saag K (2011) Which fractures are most attributable to osteoporosis? J Clin Epidemiol 64:46–53. https://doi.org/10.1016/j.jclinepi.2010.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Bitto A, Burnett BP, Polito F, Marini H, Levy RM, Armbruster MA, Minutoli L, di Stefano V, Irrera N, Antoci S, Granese R, Squadrito F, Altavilla D (2008) Effects of genistein aglycone in osteoporotic ovariectomized rats: a comparison with alendronate, raloxifene and oestradiol. Br J Pharmacol 155:896–905. https://doi.org/10.1038/bjp.2008.305

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Cecchini MG, Fleisch H, Muhibauer RC (1997) Ipriflavone inhibits bone resorption in intact and ovariectomized rats. Calcif Tissue Int 61(Suppl 1):S9–S11. https://doi.org/10.1007/s002239900377

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Kenkre JS, Bassett J (2018) The bone remodeling cycle. Ann Clin Biochem 55:308–327. https://doi.org/10.1177/0004563218759371

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Bolanos R, Francia J (2010) Isoflavones versus hormone therapy for reduction of vertebral fracture risk: indirect comparison. Menopause 17:1201–1205. https://doi.org/10.1097/gme.0b013e3181df48f0

    Article  PubMed  Google Scholar 

  40. 40.

    Civitelli R, Abbasi-Jarhomi SH, Halstead LR, Dimarogonas A (1995) Ipriflavone improves bone density and biomechanical properties of adult male rat bones. Calcif Tissue Int 56:215–219. https://doi.org/10.1007/bf00298613

    Article  PubMed  CAS  Google Scholar 

  41. 41.

    Atmaca A, Kleerekoper M, Bayraktar M, Kucuk O (2008) Soy isoflavones in the management of postmenopausal osteoporosis. Menopause 15:748–757. https://doi.org/10.1097/gme.0b013e31815c1e7f

    Article  PubMed  Google Scholar 

  42. 42.

    Gao AG, Zhou YC, Hu ZJ, Lu BB (2018) Ipriflavone promotes osteogenesis of MSCs derived from osteoporotic rats. Eur Rev Med Pharmacol Sci 22:4669–4676. https://doi.org/10.26355/eurrev_201807_15527

    Article  PubMed  Google Scholar 

  43. 43.

    Zheng X, Lee SK, Chun OK (2016) Soy isoflavones and osteoporotic bone loss: a review with an emphasis on modulation of bone remodeling. J Med Food 19:1–14. https://doi.org/10.1089/jmf.2015.0045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Ma DF, Qin LQ, Wang PY, Katoh R (2008) Soy isoflavone intake inhibits bone resorption and stimulates bone formation in menopausal women: meta-analysis of randomized controlled trials. Eur J Clin Nutr 62:155–161. https://doi.org/10.1038/sj.ejcn.1602748

    Article  PubMed  CAS  Google Scholar 

  45. 45.

    Salari Sharif P, Nikfar S, Abdollahi M (2011) Prevention of bone resorption by intake of phytoestrogens in postmenopausal women: a meta-analysis. Age (Dordr) 33:421–431. https://doi.org/10.1007/s11357-010-9180-6

    Article  CAS  Google Scholar 

  46. 46.

    Taku K, Melby MK, Kurzer MS, Mizuno S, Watanabe S, Ishimi Y (2010) Effects of soy isoflavone supplements on bone turnover markers in menopausal women: systematic review and meta-analysis of randomized controlled trials. Bone 47:413–423. https://doi.org/10.1016/j.bone.2010.05.001

    Article  PubMed  CAS  Google Scholar 

  47. 47.

    Ming LG, Chen KM, Xian CJ (2013) Function and action mechanisms of flavonoids genistein and icariin in regulating bone remodeling. J Cell Physiol 228:513–521. https://doi.org/10.1002/jcp.24158

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Turner RT, Iwaniec UT, Andrade JE, Branscum AJ, Neese SL, Olson DA, Wagner L, Wang VC, Schantz SL, Helferich WG (2013) Genistein administered as a once-daily oral supplement had no beneficial effect on the tibia in rat models for postmenopausal bone loss. Menopause 20:677–686. https://doi.org/10.1097/gme.0b013e31827d44df

    Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Dang ZC, Lowik C (2005) Dose-dependent effects of phytoestrogens on bone. Trends Endocrinol Metab 16:207–213. https://doi.org/10.1016/j.tem.2005.05.001

    Article  PubMed  CAS  Google Scholar 

  50. 50.

    Santos MA, Florencio-Silva R, Medeiros VP, Nader HB, Nonaka KO, Sasso GR, Simoes MJ, Reginato RD (2014) Effects of different doses of soy isoflavones on bone tissue of ovariectomized rats. Climacteric 17:393–401. https://doi.org/10.3109/13697137.2013.830606

  51. 51.

    Scheiber MD, Liu JH, Subbiah MT, Rebar RW, Setchell KD (2001) Dietary inclusion of whole soy foods results in significant reductions in clinical risk factors for osteoporosis and cardiovascular disease in normal postmenopausal women. Menopause 8:384–392. https://doi.org/10.1097/00042192-200109000-00015

    Article  PubMed  CAS  Google Scholar 

  52. 52.

    Unfer V, Casini ML, Costabile L, Mignosa M, Gerli S, Di Renzo GC (2004) Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo-controlled study. Fertil Steril 82:145–148. https://doi.org/10.1016/j.fertnstert.2003.11.041

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Agnusdei D, Bufalino L (1997) Efficacy of ipriflavone in established osteoporosis and long-term safety. Calcif Tissue Int 61(Suppl 1):S23–S27. https://doi.org/10.1007/s002239900381

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Setchell KD, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577–3584. https://doi.org/10.1093/jn/132.12.3577

    Article  PubMed  CAS  Google Scholar 

  55. 55.

    Kanakamedala P, Haga SB (2012) Characterization of clinical study populations by race and ethnicity in biomedical literature. Ethn Dis 22:96–101

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Abraha I, Cherubini A, Cozzolino F, De Florio R, Luchetta ML, Rimland JM, Folletti I, Marchesi M, Germani A, Orso M, Eusebi P, Montedori A (2015) Deviation from intention to treat analysis in randomised trials and treatment effect estimates: meta-epidemiological study. BMJ 350:h2445. https://doi.org/10.1136/bmj.h2445

  57. 57.

    Nuesch E, Trelle S, Reichenbach S, Rutjes AW, Burgi E, Scherer M, Altman DG, Juni P (2009) The effects of excluding patients from the analysis in randomised controlled trials: meta-epidemiological study. BMJ 339:b3244. https://doi.org/10.1136/bmj.b3244

  58. 58.

    Wood L, Egger M, Gluud LL, Schulz KF, Juni P, Altman DG, Gluud C, Martin RM, Wood AJG, Sterne JAC (2008) Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ 336:601–605. https://doi.org/10.1136/bmj.39465.451748.AD

  59. 59.

    Wieseler B, Kerekes MF, Vervoelgyi V, McGauran N, Kaiser T (2012) Impact of document type on reporting quality of clinical drug trials: a comparison of registry reports, clinical study reports, and journal publications. BMJ 344:d8141. https://doi.org/10.1136/bmj.d8141

    Article  PubMed  Google Scholar 

  60. 60.

    Moher D, Hopewell S, Schulz KF, Montori V, Gotzsche PC, Devereaux PJ, Elbourne D, Egger M, Altman DG (2010) CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340:c869. https://doi.org/10.1136/bmj.c869

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Turner L, Shamseer L, Altman DG, Schulz KF, Moher D (2012) Does use of the CONSORT Statement impact the completeness of reporting of randomised controlled trials published in medical journals? A Cochrane review. Syst Rev 1:60. https://doi.org/10.1186/2046-4053-1-60

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Sedgwick P (2015) Meta-analysis: testing for reporting bias. BMJ 350:g7857. https://doi.org/10.1136/bmj.g7857

    Article  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by Chiang Mai University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Koonrungsesomboon.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors. For this type of study, formal consent is not required.

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Risk of bias assessment of included studies. (PDF 249 kb)

ESM 2

Percentage change differences of BMD between the intervention group and the control group. (PDF 405 kb)

ESM 3

BMD at baseline between the two groups. (PDF 185 kb)

ESM 4

Funnel plots and tests for funnel plot asymmetry. (PDF 271 kb)

ESM 5

Sensitivity analysis. (PDF 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sansai, K., Na Takuathung, M., Khatsri, R. et al. Effects of isoflavone interventions on bone mineral density in postmenopausal women: a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 31, 1853–1864 (2020). https://doi.org/10.1007/s00198-020-05476-z

Download citation

Keywords

  • Bone density
  • Genistein
  • Ipriflavone
  • Isoflavones
  • Osteoporosis
  • Postmenopausal women