Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects

Abstract

Summary

There is no objective way to monitor mechanical loading characteristics during exercise for bone health improvement. We developed accelerometry-based equations to predict ground reaction force (GRF) and loading rate (LR) in normal weight to severely obese subjects. Equations developed had a high and moderate accuracy for GRF and LR prediction, respectively, thereby representing an accessible way to determine mechanical loading characteristics in clinical settings.

Introduction

There is no way to objectively prescribe and monitor exercise for bone health improvement in obese patients based on mechanical loading characteristics. We aimed to develop accelerometry-based equations to predict peak ground reaction forces (pGRFs) and peak loading rate (pLR) on normal weight to severely obese subjects.

Methods

Sixty-four subjects (45 females; 84.6 ± 21.7 kg) walked at different speeds (2–6 km·h−1) on a force plate–equipped treadmill while wearing accelerometers at lower back and hip. Regression equations were developed to predict pGRF and pLR from accelerometry data. Leave-one-out cross-validation was used to calculate prediction accuracy and Bland–Altman plots. Actual and predicted values at different speeds were compared by repeated measures ANOVA.

Results

Body mass and peak acceleration were included for pGRF prediction and body mass and peak acceleration transient rate for pLR prediction. All pGRF equation coefficients of determination were above 0.89, a good agreement between actual and predicted pGRFs, with a mean absolute percent error (MAPE) below 6.7%. No significant differences were observed between actual and predicted pGRFs at each walking speed. Accuracy indices from our equations were better than previously developed equations for normal weight subjects, namely a MAPE approximately 3 times smaller. All pLR prediction equations presented a lower accuracy compared to those developed to predict pGRF.

Conclusion

Walking pGRF and pLR in normal weight to severely obese subjects can be predicted with moderate to high accuracy by accelerometry-based equations, representing an easy and accessible way to determine mechanical loading characteristics in clinical settings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Collaboration NRF (2017) Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390(10113):2627–2642. https://doi.org/10.1016/s0140-6736(17)32129-3

    Article  Google Scholar 

  2. 2.

    Bluher M (2019) Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 15(5):288–298. https://doi.org/10.1038/s41574-019-0176-8

    Article  PubMed  Google Scholar 

  3. 3.

    Khosla S, Atkinson EJ, Riggs BL, Melton LJ 3rd (1996) Relationship between body composition and bone mass in women. J Bone Miner Res 11(6):857–863. https://doi.org/10.1002/jbmr.5650110618

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Roizen JD, Long C, Casella A, O’Lear L, Caplan I, Lai M, Sasson I, Singh R, Makowski AJ, Simmons R, Levine MA (2019) Obesity decreases hepatic 25-hydroxylase activity causing low serum 25-hydroxyvitamin D. J Bone Miner Res:e3686. doi:https://doi.org/10.1002/jbmr.3686

  5. 5.

    Kim H, Lee SH, Kim BJ, Koh JM (2017) Association between obesity and femoral neck strength according to age, sex, and fat distribution. Osteoporos Int 28(7):2137–2146. https://doi.org/10.1007/s00198-017-4015-2

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Rudman HA, Birrell F, Pearce MS, Tuck SP, Francis RM, Treadgold L, Hind K (2019) Obesity, bone density relative to body weight and prevalent vertebral fracture at age 62 years: the Newcastle Thousand Families Study. Osteoporos Int 30(4):829–836. https://doi.org/10.1007/s00198-018-04817-3

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Kaze AD, Rosen HN, Paik JM (2018) A meta-analysis of the association between body mass index and risk of vertebral fracture. Osteoporos Int 29(1):31–39. https://doi.org/10.1007/s00198-017-4294-7

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Shaw K, Gennat H, O’Rourke P, Mar CD (2006) Exercise for overweight or obesity. Cochrane Database Syst Rev (4). doi:https://doi.org/10.1002/14651858.CD003817.pub3

  9. 9.

    Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615. https://doi.org/10.1038/nri3041

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Ross R, Dagnone D, Jones PJ, Smith H, Paddags A, Hudson R, Janssen I (2000) Reduction in obesity and related comorbid conditions after diet-induced weight loss or exercise-induced weight loss in men. A randomized, controlled trial. Ann Intern Med 133(2):92–103. https://doi.org/10.7326/0003-4819-133-2-200007180-00008

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Fonseca H, Moreira-Goncalves D, Coriolano HJ, Duarte JA (2014) Bone quality: the determinants of bone strength and fragility. Sports Med 44(1):37–53. https://doi.org/10.1007/s40279-013-0100-7

    Article  PubMed  Google Scholar 

  12. 12.

    Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31(1):45–50

    Article  Google Scholar 

  13. 13.

    Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nystrom C, Mora-Gonzalez J, Lof M, Labayen I, Ruiz JR, Ortega FB (2017) Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med 47(9):1821–1845. https://doi.org/10.1007/s40279-017-0716-0

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, Anderssen SA (2006) Physical activity and clustered cardiovascular risk in children: a cross-sectional study (the European Youth Heart Study). Lancet 368(9532):299–304. https://doi.org/10.1016/S0140-6736(06)69075-2

    Article  PubMed  Google Scholar 

  15. 15.

    Godfrey A, Conway R, Meagher D, OLaighin G (2008) Direct measurement of human movement by accelerometry. Med Eng Phys 30(10):1364–1386. https://doi.org/10.1016/j.medengphy.2008.09.005

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Santos-Rocha R, Veloso A, Machado ML (2009) Analysis of ground reaction forces in step exercise depending on step pattern and stepping rate. J Strength Cond Res 23(1):209–224

    Article  Google Scholar 

  17. 17.

    Medved V (2000) Measurement of human locomotion. CRC, London

  18. 18.

    Neugebauer JM, LaFiandra M (2018) Predicting ground reaction force from a hip-borne accelerometer during load carriage. Med Sci Sports Exerc 50(11):2369–2374. https://doi.org/10.1249/MSS.0000000000001686

    Article  PubMed  Google Scholar 

  19. 19.

    Neugebauer JM, Hawkins DA, Beckett L (2012) Estimating youth locomotion ground reaction forces using an accelerometer-based activity monitor. PLoS One 7(10):e48182. https://doi.org/10.1371/journal.pone.0048182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Neugebauer JM, Collins KH, Hawkins DA (2014) Ground reaction force estimates from ActiGraph GT3X+ hip accelerations. PLoS One 9(6):e99023. https://doi.org/10.1371/journal.pone.0099023

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Fortune E, Morrow MMB, Kaufman KR (2014) Assessment of gait kinetics using triaxial accelerometers. J Appl Biomech 30(5):668–674. https://doi.org/10.1123/jab.2014-0037

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Rowlands AV, Stiles VH (2012) Accelerometer counts and raw acceleration output in relation to mechanical loading. J Biomech 45(3):448–454. https://doi.org/10.1016/j.jbiomech.2011.12.006

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Liikavainio T, Bragge T, Hakkarainen M, Jurvelin JS, Karjalainen PA, Arokoski JP (2007) Reproducibility of loading measurements with skin-mounted accelerometers during walking. Arch Phys Med Rehabil 88(7):907–915. https://doi.org/10.1016/j.apmr.2007.03.031

    Article  PubMed  Google Scholar 

  24. 24.

    Li X, Gong X, Jiang W (2017) Abdominal obesity and risk of hip fracture: a meta-analysis of prospective studies. Osteoporos Int 28(10):2747–2757. https://doi.org/10.1007/s00198-017-4142-9

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Zijlstra W, Hof AL (2003) Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2):1–10. https://doi.org/10.1016/s0966-6362(02)00190-x

    Article  PubMed  Google Scholar 

  26. 26.

    Veras L (2019) verasls/walking_GRF_ACC: prediction of walking ground reaction forces based on accelerometry. Zenodo. doi:https://doi.org/10.5281/zenodo.2576824

  27. 27.

    Field A, Miles J, Field Z (2012) Discovering statistics using R. 1st edn. Sage, London

    Google Scholar 

  28. 28.

    Aadland E, Anderssen SA (2012) Treadmill calibration of the Actigraph GT1M in young-to-middle-aged obese-to-severely obese subjects. J Obes 2012:318176. https://doi.org/10.1155/2012/318176

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Hibbing PR, Lamunion SR, Kaplan AS, Crouter SE (2018) Estimating energy expenditure with ActiGraph GT9X inertial measurement unit. Med Sci Sports Exerc 50(5):1093–1102. https://doi.org/10.1249/MSS.0000000000001532

    Article  PubMed  Google Scholar 

  30. 30.

    Crouter SE, Clowers KG, Bassett DR Jr (2006) A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol (1985) 100(4):1324–1331. https://doi.org/10.1152/japplphysiol.00818.2005

    Article  Google Scholar 

  31. 31.

    Staudenmayer J, Zhu W, Catellier DJ (2012) Statistical considerations in the analysis of accelerometry-based activity monitor data. Med Sci Sports Exerc 44(1 Suppl 1):S61–S67. https://doi.org/10.1249/MSS.0b013e3182399e0f

    Article  PubMed  Google Scholar 

  32. 32.

    Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):301–310

    Google Scholar 

  33. 33.

    Giavarina D (2015) Understanding Bland Altman analysis. Biochem Med (Zagreb) 25(2):141–151. https://doi.org/10.11613/BM.2015.015

    Article  Google Scholar 

  34. 34.

    Ancillao A, Tedesco S, Barton J, O’Flynn B (2018) Indirect measurement of ground reaction forces and moments by means of wearable inertial sensors: a systematic review. Remote Sens (Basel) 18(8). https://doi.org/10.3390/s18082564

  35. 35.

    Janz KF, Rao S, Baumann HJ, Schultz JL (2003) Measuring children’s vertical ground reaction forces with accelerometry during walking, running and jumping: the Iowa Bone Development Study. Pediatr Exerc Sci 15:34–43

    Article  Google Scholar 

  36. 36.

    Simons C, Bradshaw EJ (2016) Do accelerometers mounted on the back provide a good estimate of impact loads in jumping and landing tasks? Sports Biomech 15(1):76–88. https://doi.org/10.1080/14763141.2015.1123765

    Article  PubMed  Google Scholar 

  37. 37.

    Diniz-Sousa F, Veras L, Ribeiro JC, Boppre G, Devezas V, Santos-Sousa H, Preto J, Machado L, Vilas-Boas JP, Oliveira J, Fonseca H (2019) Accelerometry calibration in people with class II-III obesity: energy expenditure prediction and physical activity intensity identification. Gait Posture 76:104–109. https://doi.org/10.1016/j.gaitpost.2019.11.008

    Article  PubMed  Google Scholar 

  38. 38.

    Welk GJ (2005) Principles of design and analyses for the calibration of accelerometry-based activity monitors. Med Sci Sports Exerc 37(Supplement):S501–S511. https://doi.org/10.1249/01.mss.0000185660.38335.de

    Article  PubMed  Google Scholar 

  39. 39.

    Wundersitz DW, Gastin PB, Robertson S, Davey PC, Netto KJ (2015) Validation of a trunk-mounted accelerometer to measure peak impacts during team sport movements. Int J Sports Med 36(9):742–746. https://doi.org/10.1055/s-0035-1547265

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Bassey EJ, Rothwell MC, Littlewood JJ, Pye DW (1998) Pre- and postmenopausal women have different bone mineral density responses to the same high-impact exercise. J Bone Miner Res 13(12):1805–1813

    CAS  Article  Google Scholar 

  41. 41.

    Turner CH, Owan I, Takano Y (1995) Mechanotransduction in bone: role of strain rate. Am J Phys 269:E438–E442

    CAS  Google Scholar 

  42. 42.

    Stiles VH, Griew PJ, Rowlands AV (2013) Use of accelerometry to classify activity beneficial to bone in premenopausal women. Med Sci Sports Exerc 45(12):2353–2361. https://doi.org/10.1249/MSS.0b013e31829ba765

    Article  PubMed  Google Scholar 

  43. 43.

    Kluitenberg B, Bredeweg SW, Zijlstra S, Zahner W, Buist I (2012) Comparison of vertical ground reaction forces during overground and treadmill running. A validation study. BMC Musculoskelet Disord 13(1):1–8

    Article  Google Scholar 

  44. 44.

    Ngoh KJ, Gouwanda D, Gopalai AA, Chong YZ (2018) Estimation of vertical ground reaction force during running using neural network model and uniaxial accelerometer. J Biomech. https://doi.org/10.1016/j.jbiomech.2018.06.006

Download references

Acknowledgments

The study was developed in the Research Centre in Physical Activity, Health and Leisure (CIAFEL) funded by ERDF through the COMPETE and by the FCT (grant UIDB/00617/2020). The authors would like to thank the participants who took part in this research and all that have collaborated in the project.

Funding

This study was funded by the Foundation for Science and Technology of Portugal (FCT) (grant PTDC/DTP-DES/0968/2014) and by the European Regional Development Fund (ERDF) through the Operational Competitiveness Programme (COMPETE) (grant POCI-01-0145-FEDER-016707). Florêncio Diniz-Sousa was supported by the FCT (grant SFRH/BD/117622/2016), and Giorjines Boppre was supported by the FCT (grant SFRH/BD/146976/2019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Veras.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Veras, L., Diniz-Sousa, F., Boppre, G. et al. Accelerometer-based prediction of skeletal mechanical loading during walking in normal weight to severely obese subjects. Osteoporos Int 31, 1239–1250 (2020). https://doi.org/10.1007/s00198-020-05295-2

Download citation

Keywords

  • Activity monitor
  • Force plates
  • Gait
  • Mechanical loading
  • Raw acceleration