Skip to main content

Advertisement

Log in

The impact of stroke on bone properties and muscle-bone relationship: a systematic review and meta-analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

To systematically review available evidence related to the characteristics of bone changes post-stroke and the relationship between various aspects of muscle function (e.g., strength, spasticity) and bone properties after stroke onset. An extensive online database search was undertaken (last search in January 2019). Articles that examined the bone properties in stroke patients were included. The quality of the studies was evaluated with the National Institutes of Health (NIH) Study Quality Assessment Tools. Publication bias of meta-analyses was assessed using the Egger’s regression asymmetry test. The selection and evaluation of the articles were conducted by two independent researchers. Fifty-nine studies were identified. In subacute and chronic stroke studies, the skeletal sites in the paretic limbs sustained a more pronounced decline in bone quality than did their counterparts in the non-paretic limbs. The rate of changes showed a decelerating trend as post-stroke duration increased, but the timing of achieving the steady rate differed across skeletal sites. The magnitude of bone changes in the paretic upper limb was more pronounced than the paretic lower limb. There was a strong relationship between muscle strength/mass and bone density/strength index. Muscle spasticity seemed to have a negative impact on bone integrity in the paretic upper limb, but its influence on bone properties in the paretic lower limb was uncertain. Substantial bone changes in the paretic limbs occurred particularly in the first few months after stroke onset. Early intervention, muscle strength training, and long-term management strategies may be important to enhance bone health post-stroke. This review has also revealed the knowledge gaps which should be addressed in future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    PubMed  Google Scholar 

  2. Ramnemark A, Nyberg L, Lorentzon R, Englund U, Gustafson Y (1999) Progressive hemiosteoporosis on the paretic side and increased bone mineral density in the nonparetic arm the first year after severe stroke. Osteoporos Int 9:269–275

    CAS  PubMed  Google Scholar 

  3. Jørgensen L, Jacobsen B (2001) Changes in muscle mass, fat mass, and bone mineral content in the legs after stroke: a 1 year prospective study. Bone 28:655–659

    PubMed  Google Scholar 

  4. Jørgensen L, Jacobsen B, Wilsgaard T, Magnus J (2000) Walking after stroke: does it matter? Changes in bone mineral density within the first 12 months after stroke. A longitudinal study. Osteoporos Int 11:381–387

    PubMed  Google Scholar 

  5. Ashe M, Fehling P, Eng J, Khan K, McKay H (2006) Bone geometric response to chronic disuse following stroke: a pQCT study. J Musculoskelet Nueronal Interact 6:226

    CAS  Google Scholar 

  6. Pang MY, Ashe MC, Eng JJ (2007) Muscle weakness, spasticity and disuse contribute to demineralization and geometric changes in the radius following chronic stroke. Osteoporos Int 18:1243–1252

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pang MY, Ashe MC, Eng JJ (2008) Tibial bone geometry in chronic stroke patients: influence of sex, cardiovascular health, and muscle mass. J Bone Miner Res 23:1023–1030

    PubMed  PubMed Central  Google Scholar 

  8. Pang MY, Ashe MC, Eng JJ (2010) Compromised bone strength index in the hemiparetic distal tibia epiphysis among chronic stroke patients: the association with cardiovascular function, muscle atrophy, mobility, and spasticity. Osteoporos Int 21:997–1007

    CAS  PubMed  Google Scholar 

  9. Pang MY, Cheng AQ, Warburton DE, Jones AY (2012) Relative impact of neuromuscular and cardiovascular factors on bone strength index of the hemiparetic distal radius epiphysis among individuals with chronic stroke. Osteoporos Int 23:2369–2379

    CAS  PubMed  Google Scholar 

  10. Pang MY, Yang FZ, Lau RW, Cheng AQ, Li LS, Zhang M (2012) Changes in bone density and geometry of the upper extremities after stroke: a case report. Physiother Can 64:88–97

    PubMed  PubMed Central  Google Scholar 

  11. Pang M, Zhang M, Li L, Jones A (2013) Changes in bone density and geometry of the radius in chronic stroke and related factors: a one-year prospective study. J Musculoskelet Neuronal Interact 13:77–88

    CAS  PubMed  Google Scholar 

  12. Pang MY, Yang FZ, Jones AY (2013) Vascular elasticity and grip strength are associated with bone health of the hemiparetic radius in people with chronic stroke: implications for rehabilitation. Phys Ther 93:774–785

    PubMed  Google Scholar 

  13. Yang FZ, Pang MY (2015) Influence of chronic stroke impairments on bone strength index of the tibial distal epiphysis and diaphysis. Osteoporos Int 26:469–480

    CAS  PubMed  Google Scholar 

  14. Lam FM, Bui M, Yang FZ, Pang MY (2016) Chronic effects of stroke on hip bone density and tibial morphology: a longitudinal study. Osteoporos Int 27:591–603

    CAS  PubMed  Google Scholar 

  15. Burr D, Turner C (2003) Biomechanics of bone. Primer on the metabolic bone diseases and disorders of mineral metabolism. 5:58–64

  16. Bouxsein ML, Karasik D (2006) Bone geometry and skeletal fragility. Curr Osteoporos Rep 4:49–56

    PubMed  Google Scholar 

  17. Kanis J, Oden A, Johnell O (2001) Acute and long-term increase in fracture risk after hospitalization for stroke. Stroke 32:702–706

    CAS  PubMed  Google Scholar 

  18. Ramnemark A, Nyberg L, Borssén B, Olsson T, Gustafson Y (1998) Fractures after stroke. Osteoporos Int 8:92–95

    CAS  PubMed  Google Scholar 

  19. Dennis M, Lo K, McDowall M, West T (2002) Fractures after stroke: frequency, types, and associations. Stroke 33:728–734

    CAS  PubMed  Google Scholar 

  20. Whitson HE, Pieper CF, Sanders L, Horner RD, Duncan PW, Lyles KW (2006) Adding injury to insult: fracture risk after stroke in veterans. J Am Geriatr Soc 54:1082–1088

    PubMed  Google Scholar 

  21. Ramnemark A, Nilsson M, Borssén B, Gustafson Y (2000) Stroke, a major and increasing risk factor for femoral neck fracture. Stroke 31:1572–1577

    CAS  PubMed  Google Scholar 

  22. Stevenson MD, Davis SE, Kanis JA (2006) The hospitalisation costs and out-patient costs of fragility fractures. Women’s Health Med 3:149–151

    Google Scholar 

  23. Pearson OM, Lieberman DE (2004) The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol Suppl 39:63–99

    Google Scholar 

  24. Schoenau E (2005) From mechanostat theory to development of the "Functional Muscle-Bone-Unit". J Musculoskelet Nueronal Interact 5:232

    CAS  Google Scholar 

  25. Pang MYC, Eng JJ, McKay HA, Dawson AS (2005) Reduced hip bone mineral density is related to physical fitness and leg lean mass in ambulatory individuals with chronic stroke. Osteoporos Int 16:1769–1779

    PubMed  PubMed Central  Google Scholar 

  26. MacIntyre N, Rombough R, Brouwer B (2010) Relationships between calf muscle density and muscle strength, mobility and bone status in the stroke survivors with subacute and chronic lower limb hemiparesis. J Musculoskelet Neuronal Interact 10:249–255

    CAS  PubMed  Google Scholar 

  27. Ryan AS, Dobrovolny CL, Smith GV, Silver KH, Macko RF (2002) Hemiparetic muscle atrophy and increased intramuscular fat in stroke patients. Arch Phys Med Rehabil 83:1703–1707

    PubMed  Google Scholar 

  28. McCrea PH, Eng JJ, Hodgson AJ (2003) Time and magnitude of torque generation is impaired in both arms following stroke. Muscle Nerve 28:46–53

    PubMed  PubMed Central  Google Scholar 

  29. O'dwyer N, Ada L, Neilson P (1996) Spasticity and muscle contracture following stroke. Brain 119:1737–1749

    PubMed  Google Scholar 

  30. Sommerfeld DK, Eek EU, Svensson AK, Holmqvist LW, von Arbin MH (2004) Spasticity after stroke: its occurrence and association with motor impairments and activity limitations. Stroke 35:134–139

    PubMed  Google Scholar 

  31. NIoH N (2018) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. 2014. Accessed

  32. Higgins JP (2008) Cochrane handbook for systematic reviews of interventions version 5.0. 1. The Cochrane Collaboration. http://www.cochrane-handbook.org. Accessed 5 Mar 2019

  33. Celik B, Ones K, Ince N (2008) Body composition after stroke. Int J Rehabil Res 31:93–96

    PubMed  Google Scholar 

  34. Borschmann K, Iuliano S, Ghasem-Zadeh A, Churilov L, Pang MY, Bernhardt J (2018) Upright activity and higher motor function may preserve bone mineral density within 6 months of stroke: a longitudinal study. Arch Osteoporos 13:5

    PubMed  PubMed Central  Google Scholar 

  35. Hamdy RC, Moore SW, Cancellaro VA, Harvill LM (1995) Long-term effects of strokes on bone mass. Am J Phys Med Rehabil 74:351–356

    CAS  PubMed  Google Scholar 

  36. Jørgensen L, Engstad T, Jacobsen BK (2001) Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women. Stroke 32:47–51

    PubMed  Google Scholar 

  37. Jørgensen L, Jacobsen B (2001) Functional status of the paretic arm affects the loss of bone mineral in the proximal humerus after stroke: a 1-year prospective study. Calcif Tissue Int 68:11–15

    PubMed  Google Scholar 

  38. Poole KE, Loveridge N, Rose CM, Warburton EA, Reeve J (2007) A single infusion of zoledronate prevents bone loss after stroke. Stroke 38:1519–1525

    CAS  PubMed  Google Scholar 

  39. Kim HW, Kang E, Im S, Ko YJ, Im SA, Lee JI (2008) Prevalence of pre-stroke low bone mineral density and vertebral fracture in first stroke patients. Bone 43:183–186

    PubMed  Google Scholar 

  40. Lee S-B, Cho A-H, Butcher KS, Kim T-W, Ryu S-Y, Kim Y-I (2013) Low bone mineral density is associated with poor clinical outcome in acute ischemic stroke. Int J Stroke 8:68–72

    PubMed  Google Scholar 

  41. Kim SN, Lee HS, Nam HS, Lee HR, Kim JM, Han SW, Park JH, Baik JS, Kim JY, Park JH (2016) Carotid intima-media thickness is inversely related to bone density in female but not in male patients with acute stroke. J Neuroimaging 26:83–88

    PubMed  Google Scholar 

  42. Jørgensen L, Crabtree N, Reeve J, Jacobsen B (2000) Ambulatory level and asymmetrical weight bearing after stroke affects bone loss in the upper and lower part of the femoral neck differently: bone adaptation after decreased mechanical loading. Bone 27:701–707

    PubMed  Google Scholar 

  43. Lazoura O, Groumas N, Antoniadou E, Papadaki PJ, Papadimitriou A, Thriskos P, Fezoulidis I, Vlychou M (2008) Bone mineral density alterations in upper and lower extremities 12 months after stroke measured by peripheral quantitative computed tomography and DXA. J Clin Densitom 11:511–517

    PubMed  Google Scholar 

  44. Lazoura O, Papadaki PJ, Antoniadou E, Groumas N, Papadimitriou A, Thriskos P, Fezoulidis IV, Vlychou M (2010) Skeletal and body composition changes in hemiplegic patients. J Clin Densitom 13:175–180

    PubMed  Google Scholar 

  45. Chang K-H, Liou T-H, Sung J-Y, Wang C-Y, Genant HK, Chan WP (2014) Femoral neck bone mineral density change is associated with shift in standing weight in hemiparetic stroke patients. Am J Phys Med Rehabil 93:477–485

    PubMed  Google Scholar 

  46. Kumar V, Kalita J, Gujral R, Sharma V, Misra U (2001) A study of bone densitometry in patients with complex regional pain syndrome after stroke. Postgrad Med J 77:519–522

    CAS  PubMed  PubMed Central  Google Scholar 

  47. YAVUZER G, Ataman S, SÜLDÜR N, Atay M (2002) Bone mineral density in patients with stroke. Int J Rehabil Res 25:235–239

    PubMed  Google Scholar 

  48. Watanabe Y (2004) An assessment of osteoporosis in stroke patients on rehabilitation admission. Int J Rehabil Res 27:163–166

    PubMed  Google Scholar 

  49. Liu M, Tsuji T, Higuchi Y, Domen K, Tsujiuchi K, Chino N (1999) Osteoporosis in hemiplegic stroke patients as studied with dual-energy X-ray absorptiometry. Arch Phys Med Rehabil 80:1219–1226

    CAS  PubMed  Google Scholar 

  50. Ramnemark A, Nyberg L, Lorentzon R, Olsson T, Gustafson Y (1999) Hemiosteoporosis after severe stroke, independent of changes in body composition and weight. Stroke 30:755–760

    CAS  PubMed  Google Scholar 

  51. Ikai T, Uematsu M, Eun SS, Kimura C, Hasegawa C, Miyano S (2001) Prevention of secondary osteoporosis postmenopause in hemiplegia. Am J Phys Med Rehabil 80:169–174

    CAS  PubMed  Google Scholar 

  52. Tomasević-Todorović S, Simić-Panić D, Knežević A, Demeši-Drljan Č, Marić D, Hanna F (2016) Osteoporosis in patients with stroke: a cross-sectional study. Ann Indian Acad Neurol 19:286

    PubMed  PubMed Central  Google Scholar 

  53. Lam FM, Pang MY (2016) Correlation between tibial measurements using peripheral quantitative computed tomography and hip areal bone density measurements in ambulatory chronic stroke patients. Brain Inj 30:199–207

    PubMed  Google Scholar 

  54. Feng B, Wu W, Wang H, Wang J, Huang D, Cheng L (2016) Interaction between muscle and bone, and improving the effects of electrical muscle stimulation on amyotrophy and bone loss in a denervation rat model via sciatic neurectomy. Biomed Rep 4:589–594

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Marzolini S, McIlroy W, Tang A, Corbett D, Craven B, Oh P, Brooks D (2014) Predictors of low bone mineral density of the stroke-affected hip among ambulatory individuals with chronic stroke. Osteoporos Int 25:2631–2638

    CAS  PubMed  Google Scholar 

  56. Sherk KA, Sherk VD, Anderson MA, Bemben DA, Bemben MG (2013) Differences in tibia morphology between the sound and affected sides in ankle-foot orthosis-using survivors of stroke. Arch Phys Med Rehabil 94:510–515

    PubMed  Google Scholar 

  57. Schnitzer TJ, Harvey RL, Hillary Nack S, Supanwanid P, Maskala-Streff L, Roth E (2012) Bone mineral density in patients with stroke: relationship with motor impairment and functional mobility. Top Stroke Rehabil 19:436–443

    PubMed  Google Scholar 

  58. Talla R, Galea M, Lythgo N, Angeli T, Eser P (2011) Contralateral comparison of bone geometry, BMD and muscle function in the lower leg and forearm after stroke. J Musculoskelet Neuronal Interact 11:306–313

    CAS  PubMed  Google Scholar 

  59. Pietraszkiewicz F, Pluskiewicz W, Drozdzowska B (2011) Skeletal and functional status in patients with long-standing stroke. Endokrynol Pol 62:2–7

    PubMed  Google Scholar 

  60. Paker N, Bugdayci D, Tekdos D, Dere C, Kaya B (2009) Relationship between bone turnover and bone density at the proximal femur in stroke patients. J Stroke Cerebrovasc Dis 18:139–143

    PubMed  Google Scholar 

  61. Pang MY, Eng JJ (2008) Fall-related self-efficacy, not balance and mobility performance, is related to accidental falls in chronic stroke survivors with low bone mineral density. Osteoporos Int 19:919–927

    CAS  PubMed  Google Scholar 

  62. Pang MY, Ashe MC, Eng JJ, McKay HA, Dawson AS (2006) A 19-week exercise program for people with chronic stroke enhances bone geometry at the tibia: a peripheral quantitative computed tomography study. Osteoporos Int 17:1615–1625

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Pang MY, Eng JJ, Dawson AS, McKay HA, Harris JE (2005) A community-based fitness and mobility exercise program for older adults with chronic stroke: a randomized, controlled trial. J Am Geriatr Soc 53:1667–1674

    PubMed  PubMed Central  Google Scholar 

  64. Worthen LC, Kim CM, Kautz SA, Lew HL (2005) Key characteristics of walking correlate with bone density in individuals with chronic stroke. J Rehabil Res Dev 42:761

    PubMed  Google Scholar 

  65. Pang MY, Eng JJ (2005) Muscle strength is a determinant of bone mineral content in the hemiparetic upper extremity: implications for stroke rehabilitation. Bone 37:103–111

    PubMed  PubMed Central  Google Scholar 

  66. Demirbag D, Ozdemir F, Kokino S, Berkarda S (2005) The relationship between bone mineral density and immobilization duration in hemiplegic limbs. Ann Nucl Med 19:695–700

    PubMed  Google Scholar 

  67. Levendoglu F, Ugurlu H, Gürbilek M, Akkurt E, Karagözolu E (2004) Increased bone resorption in the proximal femur in patients with hemiplegia. Am J Phys Med Rehabil 83:835–841

    PubMed  Google Scholar 

  68. Runge M, Rehfeld G, Schiessl H (2004) Skeletal adaptations in hemiplegic patients. J Musculoskelet Nueronal Interact 4:191

    CAS  Google Scholar 

  69. Sahin L, Özoran K, Gündüz OH, Uçan H, Yücel M (2001) Bone mineral density in patients with stroke. Am J Phys Med Rehabil 80:592–596

    CAS  PubMed  Google Scholar 

  70. Iwamoto J, Takeda T, Ichimura S (2001) Relationships between physical activity and metacarpal cortical bone mass and bone resorption in hemiplegic patients. J Orthop Sci 6:227–233

    CAS  PubMed  Google Scholar 

  71. Haddaway M, Davie M, Steele R, Hill S (1999) Ultrasound densitometry of the os calcis in patients with hemiparesis following a cerebrovascular accident. Calcif Tissue Int 65:436–441

    CAS  PubMed  Google Scholar 

  72. Fujimatsu Y (1998) Role of the parathyroid gland on bone mass and metabolism in immobilized stroke patients. Kurume Med J 45:265–270

    CAS  PubMed  Google Scholar 

  73. Kuno H (1998) Vitamin D status and nonhemiplegic bone mass in patients following stroke. Kurume Med J 45:257–263

    CAS  PubMed  Google Scholar 

  74. Del Puente A, Pappone N, Mandes M, Mantova D, Scarpa R (1996) Determinants of bone mineral density in immobilization: a study on hemiplegic patients. Osteoporos Int 6:50–54

    PubMed  Google Scholar 

  75. Takamoto S, Masuyama T, Nakajima M, Sekiya K, Kosaka H, Morimoto S, Ogihara T, Onishi T (1995) Alterations of bone mineral density of the femurs in hemiplegia. Calcif Tissue Int 56:259–262

    CAS  PubMed  Google Scholar 

  76. Hamdy RC, Krishnaswamy G, Cancellaro V, Whalen K, Harvill L (1993) Changes in bone mineral content and density after stroke. Am J Phys Med Rehabil 72:188–191

    CAS  PubMed  Google Scholar 

  77. Iversen E, Hassager C, Christiansen C (1989) The effect of hemiplegia on bone mass and soft tissue body composition. Acta Neurol Scand 79:155–159

    CAS  PubMed  Google Scholar 

  78. Jørgensen HS, Nakayama H, Raaschou HO, Olsen TS (1995) Recovery of walking function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil 76:27–32

    PubMed  Google Scholar 

  79. Manji A, Amimoto K, Matsuda T, Wada Y, Inaba A, Ko S (2018) Effects of transcranial direct current stimulation over the supplementary motor area body weight-supported treadmill gait training in hemiparetic patients after stroke. Neurosci Lett 662:302–305

    CAS  PubMed  Google Scholar 

  80. Carlsson H, Gard G, Brogårdh C (2018) Upper-limb sensory impairments after stroke: self-reported experiences of daily life and rehabilitation. J Rehabil Med 50:45–51

    PubMed  Google Scholar 

  81. Faturi FM, Lopes Santos G, Ocamoto GN, Russo TL (2018) Structural muscular adaptations in upper limb after stroke: a systematic review. Top Stroke Rehabil 1–7

  82. Lam F, Bui M, Yang F, Pang M (2016) Chronic effects of stroke on hip bone density and tibial morphology: a longitudinal study. Osteoporos Int 27:591–603

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Feigo Zhenhui Yang was granted a full-time research studentship by the Hong Kong Polytechnic University.

Funding

This study was supported substantially by the Research Grants Council (General Research Fund no. 151025/14M).

Author information

Authors and Affiliations

Authors

Contributions

Feigo Zhenhui Yang and Marco Pang: conception of the work; Feigo Zhenhui Yang, Deborah Jehu, Huixi Ouyang, and Freddy Lam: data collection; Feigo Zhenhui Yang, Deborah Jehu, Huixi Ouyang, and Freddy Lam: data analysis and interpretation; Feigo Zhenhui Yang: drafting of the article; Feigo Zhenhui Yang, Deborah Jehu, Huixi Ouyang, Freddy Lam, and Marco Pang: critical revision of the article and final approval of the version to be published.

Corresponding author

Correspondence to M. Y. C. Pang.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Online Resource 1

(PDF 79 kb)

Online Resource 2

(PDF 128 kb)

Online Resource 3

(PDF 131 kb)

Online Resource 4

(PDF 220 kb)

Online Resource 5

(PDF 96 kb)

Online Resource 6

(PDF 174 kb)

Online Resource 7

(PDF 146 kb)

Appendix

Appendix

Search strategy (MEDLINE)

  1. 1.

    Exp Cerebrovascular accident/

  2. 2.

    Exp Stroke/

  3. 3.

    Exp CVA/

  4. 4.

    Exp cerebral vascular/

  5. 5.

    Exp Brain injuries/

  6. 6.

    Exp Hemiplegia/

  7. 7.

    Exp Hemiplegic/

  8. 8.

    Or/1-7

  9. 9.

    Exp bone/ or Exp bone density/

  10. 10.

    Exp bone mineral density/

  11. 11.

    Exp bone geometry/

  12. 12.

    Exp bone strength/

  13. 13.

    Exp bone mass/

  14. 14.

    Exp bone volume /or Exp bone area/

  15. 15.

    Exp bone turnover/

  16. 16.

    Exp bone densitometry/

  17. 17.

    Or/ 9-17

  18. 18.

    Exp Dual-energy X-ray absorptiometry/or Exp DXA/or Exp DEXA

  19. 19.

    Exp Ultrasound/

  20. 20.

    Exp absorptiometry/

  21. 21.

    Exp peripheral quantitative computed tomography/or Exp PQCT/or Exp QCT/

  22. 22.

    Or/18-22

  23. 23.

    8 and 17 and 23

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Jehu, D.A.M., Ouyang, H. et al. The impact of stroke on bone properties and muscle-bone relationship: a systematic review and meta-analysis. Osteoporos Int 31, 211–224 (2020). https://doi.org/10.1007/s00198-019-05175-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-019-05175-4

Keywords

Navigation