Skip to main content

Advertisement

Log in

Diagnosis, prevention, and treatment of bone fragility in people living with HIV: a position statement from the Swiss Association against Osteoporosis

  • Consensus Statement
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Life expectancy of people living with HIV (PLWH) is reaching similar length as in the general population. Accordingly, age-related comorbidities, including osteoporosis, are increasing. Fracture risk is higher and increases approximately 10 years earlier in PLWH. Classical risk factors of bone fragility are highly prevalent in PLWH but factors specific for HIV infection itself and the type of antiretroviral therapy (ART) (triple combination antiretroviral therapy) regimen (especially tenofovir and protease inhibitors) also contribute to bone loss. The majority of bone loss occurs during virus activity and at initiation of ART (immune reconstitution) and is associated with an increase of bone resorption (upregulation RANKL). Recent data indicate that calcium and vitamin D supplements as ART initiation lower BMD loss. The reduction of tenofovir plasma concentrations with tenofovir alafenamide attenuates BMD loss but it remains unknown whether it will contribute to reduce fracture risk. Hence, special considerations for the management of bone fragility in PLWH are warranted. Based on the current state of epidemiology and pathophysiology of osteoporosis in PLWH, we provide the consensus of the Swiss Association against Osteoporosis on best practice for diagnosis, prevention, and management of osteoporosis in this population. Periodic assessment of fracture risk is indicated in all HIV patients and general preventive measures should be implemented. All postmenopausal women, men above 50 years of age, and patients with other clinical risk for fragility fractures qualify for BMD measurement. An algorithm clarifies when treatment with bisphosphonates and review of ART regimen in favour of more bone-friendly options are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Bundesamt für Gesundheit B (2017) HIV und Aids in der Schweiz im Jahr 2016. BAG-Bull 2017(43):12–19

    Google Scholar 

  2. Gueler A, Moser A, Calmy A, Gunthard HF, Bernasconi E, Furrer H, Fux CA, Battegay M, Cavassini M, Vernazza P, Zwahlen M, Egger M, Swiss Hiv Cohort Study SNC (2017) Life expectancy in HIV-positive persons in Switzerland: matched comparison with general population. AIDS 31(3):427–436. https://doi.org/10.1097/QAD.0000000000001335

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alvarez E, Belloso WH, Boyd MA, Inkaya AC, Hsieh E, Kambugu A, Kaminski G, Martinez E, Stellbrink HJ, Walmsley S, Brown TT, Mallon PW (2016) Which HIV patients should be screened for osteoporosis: an international perspective. Curr Opin HIV AIDS 11(3):268–276. https://doi.org/10.1097/coh.0000000000000269

    Article  PubMed  Google Scholar 

  4. Bedimo R, Rosenblatt L, Myers J (2016) Systematic review of renal and bone safety of the antiretroviral regimen efavirenz, emtricitabine, and tenofovir disoproxil fumarate in patients with HIV infection. HIV Clin Trials 17(6):246–266. https://doi.org/10.1080/15284336.2016.1243363

    Article  CAS  PubMed  Google Scholar 

  5. Hasse B, Ledergerber B, Furrer H, Battegay M, Hirschel B, Cavassini M, Bertisch B, Bernasconi E, Weber R, Swiss HIVCS (2011) Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clin Infect Dis 53(11):1130–1139. https://doi.org/10.1093/cid/cir626

    Article  PubMed  Google Scholar 

  6. Compston J (2016) HIV infection and bone disease. J Intern Med 280(4):350–358. https://doi.org/10.1111/joim.12520

    Article  CAS  PubMed  Google Scholar 

  7. Biver E, Calmy A, Rizzoli R (2017) Bone health in HIV and hepatitis B or C infections. Ther Adv Musculoskelet Dis 9(1):22–34. https://doi.org/10.1177/1759720X16671927

    Article  CAS  PubMed  Google Scholar 

  8. Goh SSL, Lai PSM, Tan ATB, Ponnampalavanar S (2017) Reduced bone mineral density in human immunodeficiency virus-infected individuals: a meta-analysis of its prevalence and risk factors. Osteoporos Int 29:595–613. https://doi.org/10.1007/s00198-017-4305-8

    Article  PubMed  Google Scholar 

  9. Lachatre M, Pasquet A, Ajana F, Soudan B, Lion G, Bocket L, Cornavin P, Senneville E, Boufassa F, Cheret A (2017) HIV and hypogonadism: a new challenge for young-aged and middle-aged men on effective antiretroviral therapy. AIDS 31(3):451–453. https://doi.org/10.1097/qad.0000000000001348

    Article  PubMed  Google Scholar 

  10. Echeverría P, Bonjoch A, Puig J, Estany C, Ornelas A, Clotet B, Negredo E (2018) High prevalence of sarcopenia in HIV-infected individuals. Biomed Res Int 2018:5074923. https://doi.org/10.1155/2018/5074923 eCollection 2018

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bregigeon S, Galinier A, Zaegel-Faucher O, Cano CE, Obry V, Laroche H, Trijau S, Saout A, Poizot-Martin I (2017) Frailty in HIV infected people: a new risk factor for bone mineral density loss. AIDS 31(11):1573–1577. https://doi.org/10.1097/QAD.0000000000001507

    Article  PubMed  Google Scholar 

  12. Kovari H, Rauch A, Kouyos R, Rougemont M, Cavassini M, Schmid P, Stockle M, Bernasconi E, Weber R, Ledergerber B, Swiss HIVCS (2017) Hepatitis C infection and the risk of non-liver-related morbidity and mortality in HIV-infected persons in the Swiss HIV Cohort Study. Clin Infect Dis 64(4):490–497. https://doi.org/10.1093/cid/ciw809

    Article  CAS  PubMed  Google Scholar 

  13. Finnerty F, Walker-Bone K, Tariq S (2017) Osteoporosis in postmenopausal women living with HIV. Maturitas 95:50–54. https://doi.org/10.1016/j.maturitas.2016.10.015

    Article  PubMed  Google Scholar 

  14. Slama L, Reddy S, Phair J, Palella FJ Jr, Brown TT, ACSg M (2017) Changes in bone turnover markers with HIV seroconversion and ART initiation. J Antimicrob Chemother 72(5):1456–1461. https://doi.org/10.1093/jac/dkx011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hileman CO, Labbato DE, Storer NJ, Tangpricha V, McComsey GA (2014) Is bone loss linked to chronic inflammation in antiretroviral-naive HIV-infected adults? A 48-week matched cohort study. AIDS 28(12):1759–1767. https://doi.org/10.1097/QAD.0000000000000320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoy JF, Grund B, Roediger M, Schwartz AV, Shepherd J, Avihingsanon A, Badal-Faesen S, de Wit S, Jacoby S, La Rosa A, Pujari S, Schechter M, White D, Engen NW, Ensrud K, Aagaard PD, Carr A, Group ISBMDS (2017) Immediate initiation of antiretroviral therapy for HIV infection accelerates bone loss relative to deferring therapy: findings from the START Bone Mineral Density Substudy, a randomized trial. J Bone Miner Res 32(9):1945–1955. https://doi.org/10.1002/jbmr.3183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warming L, Hassager C, Christiansen C (2002) Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int 13(2):105–112. https://doi.org/10.1007/s001980200001

    Article  CAS  PubMed  Google Scholar 

  18. Weitzmann MN, Ofotokun I, Titanji K, Sharma A, Yin MT (2016) Bone loss among women living with HIV. Curr HIV/AIDS Rep 13(6):367–373. https://doi.org/10.1007/s11904-016-0336-6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bolland MJ, Grey A, Reid IR (2015) Skeletal health in adults with HIV infection. Lancet Diabetes Endocrinol 3(1):63–74. https://doi.org/10.1016/S2213-8587(13)70181-5

    Article  PubMed  Google Scholar 

  20. Liu AY, Vittinghoff E, Sellmeyer DE, Irvin R, Mulligan K, Mayer K, Thompson M, Grant R, Pathak S, O’Hara B, Gvetadze R, Chillag K, Grohskopf L, Buchbinder SP (2011) Bone mineral density in HIV-negative men participating in a tenofovir pre-exposure prophylaxis randomized clinical trial in San Francisco. PLoS One 6(8):e23688. https://doi.org/10.1371/journal.pone.0023688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mulligan K, Glidden DV, Anderson PL, Liu A, McMahan V, Gonzales P, Ramirez-Cardich ME, Namwongprom S, Chodacki P, de Mendonca LM, Wang F, Lama JR, Chariyalertsak S, Guanira JV, Buchbinder S, Bekker LG, Schechter M, Veloso VG, Grant RM (2015) Effects of emtricitabine/tenofovir on bone mineral density in HIV-negative persons in a randomized, double-blind, placebo-controlled trial. Clin Infect Dis 61(4):572–580. https://doi.org/10.1093/cid/civ324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, Katlama C, Costagliola D (2009) Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS 23(7):817–824. https://doi.org/10.1097/QAD.0b013e328328f789

    Article  PubMed  Google Scholar 

  23. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, Myers L, Melbourne K, Ha B, Sax PE (2011) Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 203(12):1791–1801. https://doi.org/10.1093/infdis/jir188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moran CA, Weitzmann MN, Ofotokun I (2016) The protease inhibitors and HIV-associated bone loss. Curr Opin HIV AIDS 11(3):333–342. https://doi.org/10.1097/COH.0000000000000260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brown TT, Moser C, Currier JS, Ribaudo HJ, Rothenberg J, Kelesidis T, Yang O, Dube MP, Murphy RL, Stein JH, McComsey GA (2015) Changes in bone mineral density after initiation of antiretroviral treatment with tenofovir disoproxil fumarate/emtricitabine plus atazanavir/ritonavir, darunavir/ritonavir, or raltegravir. J Infect Dis 212(8):1241–1249. https://doi.org/10.1093/infdis/jiv194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13(10):777–787. https://doi.org/10.1007/s001980200108

    Article  Google Scholar 

  27. Tinago W, Cotter AG, Sabin CA, Macken A, Kavanagh E, Brady JJ, McCarthy G, Compston J, Mallon PW (2017) Predictors of longitudinal change in bone mineral density in a cohort of HIV-positive and negative patients. AIDS 31(5):643–652. https://doi.org/10.1097/qad.0000000000001372

    Article  PubMed  Google Scholar 

  28. Biver E, Calmy A, Delhumeau C, Durosier C, Zawadynski S, Rizzoli R (2014) Microstructural alterations of trabecular and cortical bone in long-term HIV-infected elderly men on successful antiretroviral therapy. AIDS 28(16):2417–2427

    Article  CAS  PubMed  Google Scholar 

  29. Overton ET, Chan ES, Brown TT, Tebas P, McComsey GA, Melbourne KM, Napoli A, Hardin WR, Ribaudo HJ, Yin MT (2015) Vitamin D and calcium attenuate bone loss with antiretroviral therapy initiation: a randomized trial. Ann Intern Med 162(12):815–824. https://doi.org/10.7326/M14-1409

    Article  PubMed  PubMed Central  Google Scholar 

  30. Havens PL, Stephensen CB, Van Loan MD, Schuster GU, Woodhouse LR, Flynn PM, Gordon CM, Pan CG, Rutledge B, Harris DR, Price G, Baker A, Meyer WA 3rd, Wilson CM, Hazra R, Kapogiannis BG, Mulligan K (2018) Vitamin D3 supplementation increases spine bone mineral density in adolescents and young adults with human immunodeficiency virus infection being treated with tenofovir disoproxil fumarate: a randomized, placebo-controlled trial. Clin Infect Dis 66(2):220–228. https://doi.org/10.1093/cid/cix753

    Article  CAS  PubMed  Google Scholar 

  31. Ofotokun I, Titanji K, Lahiri CD, Vunnava A, Foster A, Sanford SE, Sheth AN, Lennox JL, Knezevic A, Ward L, Easley KA, Powers P, Weitzmann MN (2016) A single-dose zoledronic acid infusion prevents antiretroviral therapy-induced bone loss in treatment-naive HIV-infected patients: a phase IIb trial. Clin Infect Dis 63(5):663–671. https://doi.org/10.1093/cid/ciw331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martin A, Bloch M, Amin J, Baker D, Cooper DA, Emery S, Carr A (2009) Simplification of antiretroviral therapy with tenofovir-emtricitabine or abacavir-lamivudine: a randomized, 96-week trial. Clin Infect Dis 49(10):1591–1601. https://doi.org/10.1086/644769

    Article  CAS  PubMed  Google Scholar 

  33. McComsey GA, Lupo S, Parks D, Poggio MC, De Wet J, Kahl LP, Angelis K, Wynne B, Vandermeulen K, Gartland M, Cupo M, Aboud M (2018) Switch from tenofovir disoproxil fumarate combination to dolutegravir with rilpivirine improves parameters of bone health. AIDS 32(4):477–485. https://doi.org/10.1097/qad.0000000000001725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mills A, Arribas JR, Andrade-Villanueva J, DiPerri G, Van Lunzen J, Koenig E, Elion R, Cavassini M, Madruga JV, Brunetta J, Shamblaw D, DeJesus E, Orkin C, Wohl DA, Brar I, Stephens JL, Girard PM, Huhn G, Plummer A, Liu YP, Cheng AK, McCallister S, team G-U (2016) Switching from tenofovir disoproxil fumarate to tenofovir alafenamide in antiretroviral regimens for virologically suppressed adults with HIV-1 infection: a randomised, active-controlled, multicentre, open-label, phase 3, non-inferiority study. Lancet Infect Dis 16(1):43–52. https://doi.org/10.1016/S1473-3099(15)00348-5

    Article  CAS  PubMed  Google Scholar 

  35. Sax PE, Wohl D, Yin MT, Post F, DeJesus E, Saag M, Pozniak A, Thompson M, Podzamczer D, Molina JM, Oka S, Koenig E, Trottier B, Andrade-Villanueva J, Crofoot G, Custodio JM, Plummer A, Zhong L, Cao H, Martin H, Callebaut C, Cheng AK, Fordyce MW, McCallister S (2015) Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: two randomised, double-blind, phase 3, non-inferiority trials. Lancet 385(9987):2606–2615. https://doi.org/10.1016/s0140-6736(15)60616-x

    Article  CAS  PubMed  Google Scholar 

  36. Gotham D, Hill A, Pozniak AL (2017) Candidates for inclusion in a universal antiretroviral regimen: tenofovir alafenamide. Curr Opin HIV AIDS 12(4):324–333. https://doi.org/10.1097/COH.0000000000000379

    Article  CAS  PubMed  Google Scholar 

  37. Hoy JF, Richardson R, Ebeling PR, Rojas J, Pocock N, Kerr SJ, Martinez E, Carr A, ZEST Study Investigators (2018) Zoledronic acid is superior to tenofovir disoproxil fumarate-switching for low bone mineral density in adults with HIV. AIDSAIDS 32(14):1967–1975. https://doi.org/10.1097/QAD.0000000000001911

    Article  CAS  Google Scholar 

  38. Vikulina T, Fan X, Yamaguchi M, Roser-Page S, Zayzafoon M, Guidot DM, Ofotokun I, Weitzmann MN (2010) Alterations in the immuno-skeletal interface drive bone destruction in HIV-1 transgenic rats. Proc Natl Acad Sci U S A 107(31):13848–13853. https://doi.org/10.1073/pnas.1003020107

    Article  PubMed  PubMed Central  Google Scholar 

  39. Titanji K, Vunnava A, Sheth AN, Delille C, Lennox JL, Sanford SE, Foster A, Knezevic A, Easley KA, Weitzmann MN, Ofotokun I (2014) Dysregulated B cell expression of RANKL and OPG correlates with loss of bone mineral density in HIV infection. PLoS Pathog 10(10):e1004497. https://doi.org/10.1371/journal.ppat.1004497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moran CA, Weitzmann MN, Ofotokun I (2017) Bone loss in HIV infection. Curr Treat Options Infect Dis 9(1):52–67. https://doi.org/10.1007/s40506-017-0109-9

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ofotokun I, Titanji K, Vunnava A, Roser-Page S, Vikulina T, Villinger F, Rogers K, Sheth AN, Lahiri CD, Lennox JL, Weitzmann MN (2016) Antiretroviral therapy induces a rapid increase in bone resorption that is positively associated with the magnitude of immune reconstitution in HIV infection. AIDS 30(3):405–414. https://doi.org/10.1097/QAD.0000000000000918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ofotokun I, Titanji K, Vikulina T, Roser-Page S, Yamaguchi M, Zayzafoon M, Williams IR, Weitzmann MN (2015) Role of T-cell reconstitution in HIV-1 antiretroviral therapy-induced bone loss. Nat Commun 6:8282. https://doi.org/10.1038/ncomms9282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rockstroh JOC, Yazdanpanah Y, Di Perri G, Sax PE, Arribas JR, Brinkman K, Wohl DA, Cheng A, Zhong L, McCallister S, Das M (2017) Switching from TDF to TAF improves bone and renal safety independent of age, sex, race, or 3rd agent: results from pooled analysis (N=2816) of virologically suppressed HIV-1 infected adults. Abstract MOPEB0289, 9th IAS Conference on HIV Science, Paris. Available at http://www.ias2017.org/Portals/1/Files/IAS2017_LO.compressed.pdf?ver=2017-07-27-211231-197

  44. Casado JL, Del Rey JM, Banon S, Santiuste C, Rodriguez M, Moreno A, Perez-Elias MJ, Liano F, Moreno S (2016) Changes in kidney function and in the rate of tubular dysfunction after tenofovir withdrawal or continuation in HIV-infected patients. J Acquir Immune Defic Syndr 72(4):416–422. https://doi.org/10.1097/QAI.0000000000000986

    Article  CAS  PubMed  Google Scholar 

  45. Casado JL, Banon S, Santiuste C, Serna J, Guzman P, Tenorio M, Liano F, del Rey JM (2016) Prevalence and significance of proximal renal tubular abnormalities in HIV-infected patients receiving tenofovir. AIDS 30(2):231–239. https://doi.org/10.1097/QAD.0000000000000901

    Article  CAS  PubMed  Google Scholar 

  46. Casado JL, Santiuste C, Vazquez M, Banon S, Rosillo M, Gomez A, Perez-Elias MJ, Caballero C, Rey JM, Moreno S (2016) Bone mineral density decline according to renal tubular dysfunction and phosphaturia in tenofovir-exposed HIV-infected patients. AIDS 30(9):1423–1431. https://doi.org/10.1097/QAD.0000000000001067

    Article  CAS  PubMed  Google Scholar 

  47. Gupta SK, Yeh E, Kitch DW, Brown TT, Venuto CS, Morse GD, Ha B, Melbourne K, McComsey GA (2017) Bone mineral density reductions after tenofovir disoproxil fumarate initiation and changes in phosphaturia: a secondary analysis of ACTG A5224s. J Antimicrob Chemother 72(7):2042–2048. https://doi.org/10.1093/jac/dkx076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Manion M, Hullsiek KH, Wilson EMP, Rhame F, Kojic E, Gibson D, Hammer J, Patel P, Brooks JT, Baker JV, Sereti I, Study to Understand the Natural History of HIVAitEoEATI (2017) Vitamin D deficiency is associated with IL-6 levels and monocyte activation in HIV-infected persons. PLoS One 12(5):e0175517. https://doi.org/10.1371/journal.pone.0175517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Havers FP, Detrick B, Cardoso SW, Berendes S, Lama JR, Sugandhavesa P, Mwelase NH, Campbell TB, Gupta A, Actg AP, Teams NS (2014) Change in vitamin d levels occurs early after antiretroviral therapy initiation and depends on treatment regimen in resource-limited settings. PLoS One 9(4):e95164. https://doi.org/10.1371/journal.pone.0095164

    Article  PubMed  PubMed Central  Google Scholar 

  50. Wohl DA, Orkin C, Doroana M, Pilotto JH, Sungkanuparph S, Yeni P, Vanveggel S, Deckx H, Boven K (2014) Change in vitamin D levels and risk of severe vitamin D deficiency over 48 weeks among HIV-1-infected, treatment-naive adults receiving rilpivirine or efavirenz in a phase III trial (ECHO). Antivir Ther 19(2):191–200. https://doi.org/10.3851/IMP2721

    Article  CAS  PubMed  Google Scholar 

  51. Hoy J, Young B (2016) Do people with HIV infection have a higher risk of fracture compared with those without HIV infection? Curr Opin HIV AIDS 11(3):301–305. https://doi.org/10.1097/COH.0000000000000249

    Article  PubMed  Google Scholar 

  52. Yin MT, Shi Q, Hoover DR, Anastos K, Sharma A, Young M, Levine A, Cohen MH, Shane E, Golub ET, Tien PC (2010) Fracture incidence in HIV-infected women: results from the Women’s Interagency HIV Study. AIDS 24(17):2679–2686. https://doi.org/10.1097/QAD.0b013e32833f6294

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gonciulea A, Wang R, Althoff KN, Palella FJ, Lake J, Kingsley LA, Brown TT (2017) An increased rate of fracture occurs a decade earlier in HIV+ compared with HIV- men. AIDS 31(10):1435–1443. https://doi.org/10.1097/QAD.0000000000001493

    Article  PubMed  PubMed Central  Google Scholar 

  54. Brown TT, Hoy J, Borderi M, Guaraldi G, Renjifo B, Vescini F, Yin MT, Powderly WG (2015) Recommendations for evaluation and management of bone disease in HIV. Clin Infect Dis 60(8):1242–1251. https://doi.org/10.1093/cid/civ010

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yin MT, Shiau S, Rimland D, Gibert CL, Bedimo RJ, Rodriguez-Barradas MC, Harwood K, Aschheim J, Justice AC, Womack JA (2016) Fracture prediction with modified-FRAX in older HIV-infected and uninfected men. J Acquir Immune Defic Syndr 72(5):513–520. https://doi.org/10.1097/QAI.0000000000000998

    Article  PubMed  PubMed Central  Google Scholar 

  56. McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJ, Fujita Y, Gluer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren O, Lorentzon M, Mellstrom D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31(5):940–948. https://doi.org/10.1002/jbmr.2734

    Article  PubMed  Google Scholar 

  57. Ciullini L, Pennica A, Argento G, Novarini D, Teti E, Pugliese G, Aceti A, Conti FG (2018) Trabecular bone score (TBS) is associated with sub-clinical vertebral fractures in HIV-infected patients. J Bone Miner Metab 36(1):111–118. https://doi.org/10.1007/s00774-017-0819-6

    Article  PubMed  Google Scholar 

  58. Tan DH, Raboud J, Szadkowski L, Szabo E, Hu H, Wong Q, Cheung AM, Walmsley SL (2017) Novel imaging modalities for the comparison of bone microarchitecture among HIV+ patients with and without fractures: a pilot study. HIV Clin Trials 18(1):28–38. https://doi.org/10.1080/15284336.2016.1266074

    Article  PubMed  Google Scholar 

  59. Bedimo RJ, Adams-Huet B, Poindexter J, Brown G, Farukhi I, Castanon R, Turner D, Moore T, Tebas P, Maalouf NM (2017) The differential effects of HIV and HCV on bone micro-architecture and fracture risk. Clin Infect Dis 66:1442–1447. https://doi.org/10.1093/cid/cix1011

    Article  CAS  Google Scholar 

  60. Guerri-Fernandez R, Molina-Morant D, Villar-Garcia J, Herrera S, Gonzalez-Mena A, Guelar A, Trenchs-Rodriguez M, Diez-Perez A, Knobel H (2017) Bone density, microarchitecture, and tissue quality after long-term treatment with tenofovir/emtricitabine or abacavir/lamivudine. J Acquir Immune Defic Syndr 75(3):322–327. https://doi.org/10.1097/qai.0000000000001396

    Article  PubMed  Google Scholar 

  61. Recommendations of the Swiss Association against Osteoporosis (SVGO/ASCO) (2015) Prevention, diagnostic and treatment of osteoporosis. Available from: http://www.svgo.ch/content/documents/2015/SVGO%20Empfehlungen%202015.pdf

  62. Bischoff Ferrari HA, Burckhardt P, QuackLoetscher K, Gerber B, I’Allemand D, Laimbacher J, Bachmannan M, Rizzoli R (2012) Vitamin D deficiency: evidence, safety, and recommendations for the Swiss population. Report written by a group of experts on behalf of the Federal Commission for Nutrition. Approved by the Federal Commission for Nutrition on November 3, 2011 http://www.bagadminch/themen/ernaehrung_bewegung/05207/13246/indexhtml?lang=de

  63. Lippuner K, Johansson H, Kanis JA, Rizzoli R (2010) FRAX assessment of osteoporotic fracture probability in Switzerland. Osteoporos Int 21(3):381–389. https://doi.org/10.1007/s00198-009-0975-1

    Article  CAS  PubMed  Google Scholar 

  64. Negredo E, Warriner AH (2016) Pharmacologic approaches to the prevention and management of low bone mineral density in HIV-infected patients. Curr Opin HIV AIDS 11(3):351–357. https://doi.org/10.1097/COH.0000000000000271

    Article  CAS  PubMed  Google Scholar 

  65. Natsag J, Kendall MA, Sellmeyer DE, McComsey GA, Brown TT (2016) Vitamin D, osteoprotegerin/receptor activator of nuclear factor-kappaB ligand (OPG/RANKL) and inflammation with alendronate treatment in HIV-infected patients with reduced bone mineral density. HIV Med 17(3):196–205. https://doi.org/10.1111/hiv.12291

    Article  CAS  PubMed  Google Scholar 

  66. Wheeler AL, Tien PC, Grunfeld C, Schafer AL (2015) Teriparatide treatment of osteoporosis in an HIV-infected man: a case report and literature review. AIDS 29(2):245–246. https://doi.org/10.1097/QAD.0000000000000529

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Isabel Hartmann for manuscript editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Meier.

Ethics declarations

Conflicts of interest

Alexandra Calmy has received travel grants from Gilead and unrestricted educational grants from Gilead, ViiV, MSD, and AbbVie. Emmanuel Biver, Bérengère Aubry-Rozier, Martin Birkhäuser, Heike A. Bischoff-Ferrari, Serge Ferrari, Diana Frey, Reto W. Kressig, Olivier Lamy, Kurt Lippuner, Norbert Suhm, and Christian Meier declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biver, E., Calmy, A., Aubry-Rozier, B. et al. Diagnosis, prevention, and treatment of bone fragility in people living with HIV: a position statement from the Swiss Association against Osteoporosis. Osteoporos Int 30, 1125–1135 (2019). https://doi.org/10.1007/s00198-018-4794-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-018-4794-0

Keywords

Navigation