Skip to main content

Lithium use and risk of fracture: a systematic review and meta-analysis of observational studies

Abstract

Summary

This systematic review and meta-analysis summarized the results from nine eligible observational studies. Lithium use was significantly associated with a decrease risk of fractures.

Introduction

The association between lithium use and risk of fracture is uncertain. To date, there have been no meta-analyses that have studied the association between the two. We conducted a systematic review and meta-analysis to examine the effect of lithium medication on the risk of fracture.

Methods

A comprehensive literature search was performed in PubMed, Embase, and MEDLINE to include eligible observational studies. Three reviewers conducted the literature search, study selection, study appraisal, and data abstraction independently. Random effects models were used to obtain the overall estimate for meta-analysis. Cochran’s Q and Higgins’ I2 were used to assess heterogeneity. A funnel plot and Egger’s regression test were employed to assess publication bias.

Results

Of the 3819 studies that were identified by our search strategy, eight were eligible for the systematic review, while seven of them qualified for the meta-analysis. In studies that reported risk ratio (RR) of fracture as an outcome (five studies [n = 1,134,722]), lithium use was associated with a 20% decrease in risk of fracture (RR = 0.80; 95% CI, 0.73–0.87; p < 0.01). A decreased risk of fracture associated with lithium was also observed in studies that adjusted for previous fractures (RR = 0.81; 95% CI, 0.73–0.89; p < 0.01). The decreased risk of fracture associated with lithium use remained consistent in all the analyses with different inclusion criteria. Neither significant heterogeneity nor significant publication bias was observed.

Conclusion

The present systematic review and meta-analysis demonstrated that lithium use was associated with a significant decreased risk of fracture.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Abbreviations

BMD:

Bone mineral density

CI:

Confidence interval

HR:

Hazard ratio

MOOSE:

Meta-analysis of Observational Studies in Epidemiology

PRISMA:

Preferred Reporting Items for Systematic Review and Meta-analyses

OR:

Odds ratio

RR:

Risk ratio or relative risk

REDCap:

Research Electronic Data Capture

References

  1. 1.

    Pisani P, Renna MD, Conversano F, Casciaro E, di Paola M, Quarta E, Muratore M, Casciaro S (2016) Major osteoporotic fragility fractures: risk factor updates and societal impact. World J Orthop 7:171–181. https://doi.org/10.5312/wjo.v7.i3.171

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17:1726–1733. https://doi.org/10.1007/s00198-006-0172-4

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Melton LJ, Atkinson EJ, O’Connor MK et al (1998) Bone density and fracture risk in men. J Bone Miner Res Off J Am Soc Bone Miner Res 13:1915–1923. https://doi.org/10.1359/jbmr.1998.13.12.1915

    Article  Google Scholar 

  4. 4.

    Melton LJ, Chrischilles EA, Cooper C et al (1992) Perspective. How many women have osteoporosis? J Bone Miner Res Off J Am Soc Bone Miner Res 7:1005–1010. https://doi.org/10.1002/jbmr.5650070902

    Article  Google Scholar 

  5. 5.

    Kanis JA, Johnell O, Oden A et al (2000) Long-term risk of osteoporotic fracture in Malmö. Osteoporos Int 11:669–674 

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Schneider EL, Guralnik JM (1990) The aging of America. Impact on health care costs. JAMA 263:2335–2340

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Hernlund E, Svedbom A, Ivergård M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Svedbom A, Hernlund E, Ivergård M et al (2013) Osteoporosis in the European Union: a compendium of country-specific reports. Arch Osteoporos 8:137. https://doi.org/10.1007/s11657-013-0137-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475. https://doi.org/10.1359/jbmr.061113

    Article  PubMed  Google Scholar 

  10. 10.

    Chinese Health Promotion Society Summary statement of osteoporosis white paper China 2008. Chin J Health Manag. 2009; 3 (3:):148–154

  11. 11.

    Burgess S, Geddes J, Hawton K, et al (2001) Lithium for maintenance treatment of mood disorders. Cochrane Database Syst Rev CD003013 . doi: https://doi.org/10.1002/14651858.CD003013

  12. 12.

    Kessing LV, Søndergård L, Kvist K, Andersen PK (2005) Suicide risk in patients treated with lithium. Arch Gen Psychiatry 62:860–866. https://doi.org/10.1001/archpsyc.62.8.860

    Article  PubMed  Google Scholar 

  13. 13.

    Tondo L, Hennen J, Baldessarini RJ (2001) Lower suicide risk with long-term lithium treatment in major affective illness: a meta-analysis. Acta Psychiatr Scand 104:163–172

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Wu Q, Qu W, Crowell MD, Hentz JG, Frey KA (2013) Tricyclic antidepressant use and risk of fractures: a meta-analysis of cohort and case-control studies. J Bone Miner Res Off J Am Soc Bone Miner Res 28:753–763. https://doi.org/10.1002/jbmr.1813

    Article  Google Scholar 

  15. 15.

    Wu Q, Bencaz AF, Hentz JG, Crowell MD (2012) Selective serotonin reuptake inhibitor treatment and risk of fractures: a meta-analysis of cohort and case-control studies. Osteoporos Int 23:365–375. https://doi.org/10.1007/s00198-011-1778-8

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Nordenström J, Elvius M, Bågedahl-Strindlund M, Bian Zhao, Törring O (1994) Biochemical hyperparathyroidism and bone mineral status in patients treated long-term with lithium. Metabolism 43:1563–1567

    Article  PubMed  Google Scholar 

  17. 17.

    Mak TW, Shek CC, Chow CC et al (1998) Effects of lithium therapy on bone mineral metabolism: a two-year prospective longitudinal study. J Clin Endocrinol Metab 83:3857–3859. https://doi.org/10.1210/jcem.83.11.5269

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Christiansen C, Baastrup PC, Transbøl I (1980) Development of “primary” hyperparathyroidism during lithium therapy: longitudinal study. Neuropsychobiology 6:280–283. https://doi.org/10.1159/000117770

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Mallette LE, Khouri K, Zengotita H et al (1989) Lithium treatment increases intact and midregion parathyroid hormone and parathyroid volume. J Clin Endocrinol Metab 68:654–660. https://doi.org/10.1210/jcem-68-3-654

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Zamani A, Omrani GR, Nasab MM (2009) Lithium’s effect on bone mineral density. Bone 44:331–334. https://doi.org/10.1016/j.bone.2008.10.001

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Wilting I, de Vries F, Thio BMKS, Cooper C, Heerdink ER, Leufkens HGM, Nolen WA, Egberts ACG, van Staa TP (2007) Lithium use and the risk of fractures. Bone 40:1252–1258. https://doi.org/10.1016/j.bone.2006.12.055

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Bolton JM, Metge C, Lix L, Prior H, Sareen J, Leslie WD (2008) Fracture risk from psychotropic medications: a population-based analysis. J Clin Psychopharmacol 28:384–391. https://doi.org/10.1097/JCP.0b013e31817d5943

    Article  PubMed  Google Scholar 

  23. 23.

    Vestergaard P, Rejnmark L, Mosekilde L (2005) Reduced relative risk of fractures among users of lithium. Calcif Tissue Int 77:1–8. https://doi.org/10.1007/s00223-004-0258-y

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Stroup DF, Berlin JA, Morton SC et al (2000) Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 283:2008–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151(264–269):W64

    Google Scholar 

  26. 26.

    Fleiss JL (1971) Measuring nominal scale agreement among many raters. Psychol Bull 76:378–382

    Article  Google Scholar 

  27. 27.

    Wells GA, Shea B, O’Connell D, et al The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses

  28. 28.

    Ressing M, Blettner M, Klug SJ (2010) Data analysis of epidemiological studies: part 11 of a series on evaluation of scientific publications. Dtsch Arztebl Int 107:187–192. https://doi.org/10.3238/arztebl.2010.0187

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Nurminen M (1995) To use or not to use the odds ratio in epidemiologic analyses? Eur J Epidemiol 11:365–371

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Furukawa TA, Guyatt GH, Griffith LE (2002) Can we individualize the “number needed to treat”? An empirical study of summary effect measures in meta-analyses. Int J Epidemiol 31:72–76

    Article  PubMed  Google Scholar 

  31. 31.

    Bolton JM, Morin SN, Majumdar SR et al (2017) Association of mental disorders and related medication use with risk for major osteoporotic fractures. JAMA Psychiatry 74:641–648. https://doi.org/10.1001/jamapsychiatry.2017.0449

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Su J-A, Cheng B-H, Huang Y-C, Lee CP, Yang YH, Lu ML, Hsu CY, Lee Y, McIntyre RS, Chin Lin T, Chin-Hung Chen V (2017) Bipolar disorder and the risk of fracture: a nationwide population-based cohort study. J Affect Disord 218:246–252. https://doi.org/10.1016/j.jad.2017.04.037

    Article  PubMed  Google Scholar 

  33. 33.

    Vestergaard P, Rejnmark L, Mosekilde L (2006) Anxiolytics, sedatives, antidepressants, neuroleptics and the risk of fracture. Osteoporos Int 17:807–816. https://doi.org/10.1007/s00198-005-0065-y

    Article  CAS  PubMed  Google Scholar 

  34. 34.

    Clément-Lacroix P, Ai M, Morvan F et al (2005) Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice. Proc Natl Acad Sci U S A 102:17406–17411. https://doi.org/10.1073/pnas.0505259102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lazarus JH, Davies CJ, Woodhead JS et al (1987) Effect of lithium on the metabolic response to parathyroid hormone. Miner Electrolyte Metab 13:63–66

    CAS  PubMed  Google Scholar 

  36. 36.

    Berger C, Langsetmo L, Joseph L, Hanley DA, Davison KS, Josse RG, Prior JC, Kreiger N, Tenenhouse A, Goltzman D, the CaMos Research Group (2009) Association between change in BMD and fragility fracture in women and men. J Bone Miner Res Off J Am Soc Bone Miner Res 24:361–370. https://doi.org/10.1359/jbmr.081004

    Article  Google Scholar 

  37. 37.

    Hsu C-C, Hsu Y-C, Chang K-H, Lee CY, Chong LW, Wang YC, Hsu CY, Kao CH (2016) Increased risk of fracture in patients with bipolar disorder: a nationwide cohort study. Soc Psychiatry Psychiatr Epidemiol 51:1331–1338. https://doi.org/10.1007/s00127-016-1242-3

    Article  PubMed  Google Scholar 

  38. 38.

    Diaz FJ, James D, Botts S, Maw L, Susce MT, de Leon J (2009) Tobacco smoking behaviors in bipolar disorder: a comparison of the general population, schizophrenia, and major depression. Bipolar Disord 11:154–165. https://doi.org/10.1111/j.1399-5618.2009.00664.x

    Article  PubMed  Google Scholar 

  39. 39.

    Gonzalez-Pinto A, Gutierrez M, Ezcurra J et al (1998) Tobacco smoking and bipolar disorder. J Clin Psychiatry 59:225–228 

    Article  CAS  PubMed  Google Scholar 

  40. 40.

    Cassidy F, Ahearn EP, Carroll BJ (2001) Substance abuse in bipolar disorder. Bipolar Disord 3:181–188

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Alghadir AH, Gabr SA, Al-Eisa E (2015) Physical activity and lifestyle effects on bone mineral density among young adults: sociodemographic and biochemical analysis. J Phys Ther Sci 27:2261–2270. https://doi.org/10.1589/jpts.27.2261

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank X Goodman for her advice on the literature search strategy.

Sources of funding

The project was supported by the Fund of Knowledge from the University of Nevada, Las Vegas.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Q. Wu.

Ethics declarations

Role of sponsors 

In the data collection, management, analysis, and interpretation and in the preparation, review, approval, and study design of the manuscript, funding sponsors were not involved.

Conflicts of interest

None.

Electronic supplementary material

Supplemental Table 1

(DOCX 57.7 kb)

Supplemental Table 2

(DOCX 43.6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Wu, Q., Zhang, S. et al. Lithium use and risk of fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int 30, 257–266 (2019). https://doi.org/10.1007/s00198-018-4745-9

Download citation

Keywords

  • Bone fracture
  • Lithium
  • Meta-analysis
  • Osteoporosis
  • Systematic review