Advertisement

Osteoporosis International

, Volume 29, Issue 7, pp 1679–1681 | Cite as

High levels of serum sclerostin and DKK1 in a case of Klippel-Trénaunay syndrome

  • P. Muto
  • A. Lo Gullo
  • G. Mandraffino
  • S. Loddo
  • M. Atteritano
Case Report

Abstract

Klippel-Trénaunay syndrome (KTS) is described as a complex syndrome characterized by various combinations of capillary, venous, and lymphatic malformations associated with bone and soft tissue hypertrophy. We report a case of a 67-year-old postmenopausal Caucasian women with KTS that shows elevated levels of sclerostin and Dickkopf-related protein 1 (DKK1). Dual-energy X-ray absorptiometry (DXA) BMD T-scores at lumbar spine and femur were normal. Serum calcium and phosphorus levels were consistently normal, 25-hydroxyvitamin D (25OHD) < 30 ng/mL, and normal parathyroid hormone (PTH). Turnover markers (serum osteocalcin [OCN], and carboxy-terminal cross-linking telopeptide of type 1 collagen [CTx]) were in the reference limits. It is interesting to note that the serum levels of sclerostin and DKK-1 were significantly higher in our patient with KTS than in a healthy volunteer (control), without impact on bone mineral density and bone formation markers. In fact, in our patient, the BMD at lumbar spine and femur was normal, and osteocalcin was not suppressed. Based on what is known, we would have expected to find low levels of the inhibitors of the Wnt system, perhaps we can explain the data as a response to the compensation for β-catenin hyper-transformation.

Keywords

Bone metabolism Klippel-Trénaunay syndrome Sclerostin 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Klippel M, Trenaunay P (1900) Du naevus variquex osteohypertrophique. Arch Gen Med (Paris) 3:641–672Google Scholar
  2. 2.
    Uller W, Fishman S, Alomari AI (2014) Overgrowth syndromes with complex vascular anomalies. Semin Pediatr Surg 23:208–215CrossRefPubMedGoogle Scholar
  3. 3.
    Tian XL, Kadaba R, You SA, Liu M, Timur AA, Yang L, Chen Q, Szafranski P, Rao S, Wu L, Housman DE, DiCorleto PE, Driscoll DJ, Borrow J, Wang Q (2004) Identification of an angiogenic factor that when mutated causes susceptibility to Klippel-Trénaunay syndrome. Nature 427:640–645CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Aelvoet GE, Jorens PG, Roelen LM (1992) Genetic aspects of the Klippel-Trénaunay syndrome, in. Br J Dermatol 126:603–607CrossRefPubMedGoogle Scholar
  5. 5.
    Harper J, Klagsbrun M (1999) Cartilage to bone—angiogenesis leads the way. Nat Med 5:617–618CrossRefPubMedGoogle Scholar
  6. 6.
    Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R (1995) Toward a molecular understanding of skeletal development. Cell 80:371–378CrossRefPubMedGoogle Scholar
  7. 7.
    Reis M, Liebne S (2013) Wnt signaling in the vasculature. Exp Cell Res 319:1317–1323CrossRefPubMedGoogle Scholar
  8. 8.
    Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116:1202–1209CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hoeppner LH, Secreto FJ, Westendorf JJ (2009) Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 13:485–496CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dufourcq P, Couffinhal T, Ezan J, Barandon L, Moreau C, Daret D, Duplàa C (2002) FrzA, a secreted frizzled related protein, induced angiogenic response. Circulation 106:3097–3103CrossRefPubMedGoogle Scholar
  11. 11.
    Min Y, Park H, Choi HJ, Kim Y, Pyun BJ, Agrawal V, Song BW, Maeng JJ, Rho SS, Shim S, Chai JH, Koo BK, Hong HJ, Yun CO, Choi C, Kim YM, Hwang KG, Kwon YG (2011) The WNT antagonist Dickkopf2 promotes angiogenesis in rodent and human endothelial cells. J Clin Invest 121(5):1882–1893CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, Thesleff I, Itoh N (2003) Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligands specificity. J Biol Chem 278(26):24113–24117CrossRefPubMedGoogle Scholar
  13. 13.
    Smadja DM, d'Audigier C, Weiswald LB, Badoual C, Dangles-Marie V, Mauge L, Evrard S, Laurendeau I, Lallemand F, Germain S, Grelac F, Dizier B, Vidaud M, Bieche I, Gaussem P (2010) TheWnt antagonist Dickkopf-1 increases endothelial progenitor cell angiogenic potential. Arterioscler Thromb Vasc Biol 30:2544–2552CrossRefPubMedGoogle Scholar
  14. 14.
    Park H, Jung HY, Choi HJ, Kim DY, Yoo JY, Yun CO, Min JK, Kim YM, Kwon YG (2014) Distinct roles of DKK1 and DKK2 in tumor angiogenesis. Angiogenesis 17(1):221–234CrossRefPubMedGoogle Scholar
  15. 15.
    Oranger A, Brunetti G, Colaianni G, Tamma R, Carbone C, Lippo L, Mori G, Pignataro P, Cirulli N, Zerlotin R, Moretti B, Notarnicola A, Ribatti D, Grano M, Colucci S (2017) Sclerostin stimulates angiogenesis in human endothelial cells. Bone 101:26–36.  https://doi.org/10.1016/j.bone.2017.03.001 CrossRefPubMedGoogle Scholar
  16. 16.
    Kashiwada T, Fukuhara S, Terai K, Tanaka T, Wakayama Y, Ando K, Nakajima H, Fukui H, Yuge S, Saito Y, Gemma A, Mochizuki N (2015) β-catenin-dependent transcription is central to Bmp-mediated formation of venous vessels. Development 142:497–509.  https://doi.org/10.1242/dev.115576 CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2018

Authors and Affiliations

  • P. Muto
    • 1
  • A. Lo Gullo
    • 1
  • G. Mandraffino
    • 1
  • S. Loddo
    • 1
  • M. Atteritano
    • 1
  1. 1.Department of Clinical and Experimental MedicineUniversity of MessinaMessinaItaly

Personalised recommendations