Bone metabolism markers are associated with neck circumference in adult Arab women



The study aimed to determine whether neck circumference is associated with bone metabolism markers among adult Arab women and found modest but significant associations with bone resorption markers, suggesting that neck circumference, a surrogate measure of upper subcutaneous fat, influences bone turnover expression among adult females.


Body fat distribution is associated with decreased bone resorption and neck circumference (NC), a surrogate measure for upper body fat, has never been tested as a marker that can reflect bone turnover. This is the first study aimed to analyze the associations between NC and several bone biomarkers among adult Saudi women.


This cross-sectional study included a total of 265 middle-aged Saudi women [86 non-obese (mean age 52.7 ± 8.1; mean BMI 26.9 ± 2.3) and 179 obese (mean age 50.6 ± 7.5; mean BMI 35.7 ± 4.5)] recruited from primary care centers in Riyadh, Saudi Arabia. Anthropometrics included BMI, NC, waist and hip circumferences, total body fat percentage (%), and blood pressure. Biochemical parameters included glucose and lipid profile which were measured routinely. Serum levels of 25(OH) D, parathyroid hormone, RANKl, sclerostin, C-terminal telopeptide of collagen I (CTX-I), Dkk1, IL1β, osteoprotegerin, osteopontin, and osteocalcin were measured using commercially available assays.


In all groups, NC was inversely associated with PTH (R = − 0.22; p < 0.05) and positively associated with osteoprotegerin (R = 0.20; p < 0.05) even after adjustments for age and BMI. Using all anthropometric indices as independent variables showed that only NC explained the variance perceived in CTX-I (p = 0.049). In the non-obese, waist-hip ratio (WHR) was significantly associated with sclerostin (R = 0.40; p < 0.05) and body fat was significantly associated with osteopontin (R = 0.42; p < 0.05).


NC is modestly but significantly associated with bone biomarkers, particularly the bone resorption markers, among adult Arab women. The present findings highlight the importance of NC as measure of upper body subcutaneous fat in influencing bone biomarker expression in adult females.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. 1.

    Al-Lawati JA, Jousilahti P (2007) Body mass index, waist circumference and waist-to-hip ratio cut-off points for categorisation of obesity among Omani Arabs. Public Health Nutr 11:102–108

    Article  PubMed  Google Scholar 

  2. 2.

    Greco EA, Lenzi A, Migliaccio S (2015) The obesity of bone. Ther Adv Endocrinol Metab 6(6):273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Lopez-Gomez JJ, Perez-Castrillon JL, de Luis Roman DA (2016) Impact of obesity on bone metabolism. Endocrinol Nutr 63(10):551–559

    Article  PubMed  Google Scholar 

  4. 4.

    Sharpses SA, Pop LC, Wang Y (2017) Obesity is a concern for bone health and aging. Nutr Res 39:1–13

    Article  CAS  Google Scholar 

  5. 5.

    Yang S, Center JR, Eisman JA, Nguyen TV (2015) Association between fat mass, lean mass, and bone loss: the Dubbo osteoporosis epidemiology study. Osteoporos Int 26(4):1381–1386

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Wang J, Yan D, Hou X, Chen P, Sun Q, Bao Y, hu C, Zhang Z, Jia W (2017) Association of adiposity indices with bone mineral density and bone turnover in Chinese population. Osteoporos Int 28(9):2645–2652

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Vague J (1956) The degree of masculine differentiation of obesities: a factor determining predisposition to diabetes, atherosclerosis, gout and uric calculous disease. Am J Clin Nutr 4:20–34

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Sjostrom CD, Hakangard AC, Lissner L, Sjostrom L (1995) Body compartment and subcutaneous adipose tissue distribution – risk factor patterns in obese subjects. Obes Res 3:9–22

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Sjostrom CD, Lissner L, Sjostrom L (1997) Relationship between changes in body composition and changes in cardiovascular risk factors: the SOS intervention study: Swedish obese subjects. Obes Res 5:519–530

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Namazi N, Larijani B, Surkan PJ, Azadbakht L (2018) The association of neck circumference with risk of metabolic syndrome and its components in adults. A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis 28(7):657–674

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Zhao LJ, Jiang H, Papasian CJ, Maulik D, Drees B, Hamilton J, Deng HW (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23(1):17–29

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Andreozzi P, Verrusio W, Viscogliosi G, Summa ML, Gueli N, Cacciafesta M, Albanese CV (2016) Relationship between vitamin D and body fat distribution evaluated by DXA in postmenopausal women. Nutrition 32(6):687–692

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Shetty S, Kapoor N, Bondu JD, Thomas N, Paul TV (2016) Bone turnover markers: emerging tool in the management of osteoporosis. Indian J Endocrinol Metab 20(6):846–852

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Terreni A, Pezzati P (2012) Biochemical markers in the follow-up of osteoporotic patients. Clin Cases Miner Bone Metab 9(2):80–84

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Poggiogalle E, Jamshed H, Peterson CM (2018) Circadian regulation of glucose, lipid and energy metabolism in humans. Metabolism 84:11–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Pacifici R (2008) Estrogen deficiency, T cells and bone loss. Cell Immunol 252(1–2):68–80

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Baud'huin M, Duplomb L, Teletchea S, Lamoureux F, Ruiz-Velasco C, Maillasson M, Redini F, Heymann MF, Heymann D (2013) Osteoprotegerin: multiple partners for multiple functions. Cytokine Growth Factor Rev 24(5):401–409

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Perez de Ciriza C, Lawrie A, Varo N (2015) Osteoprotegerin in cardiometabolic disorders. Int J Endocrinol 2015:564934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Vergely C (2018) The role of osteoprotegerin in the crosstalk between vessels and bone: its potential utility as a marker of cardiometabolic diseases. Pharmacol Ther 182:115–132

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    De Fusco C, Messina A, Monda V, Viggiano E, Moscatelli F, Valenzano A, Esposito T, Sergio C, Cibelli G, Monda M, Messina G (2017) Osteopontin: relation between adipose tissue and bone homeostasis. Stem Cells Int 2017:4045238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Fuster JJ, Zuriaga MA, Ngo DT, Farb MG, Aprahamian T, Yamaguchi TP, Gokce N, Walsh K (2015) Noncanonical Ent signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose-tissue expansion. Diabetes 64(4):1235–1248

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Lu H, Li X, Mu P, Qian B, Jiang W, Zeng L (2016) Dickkopf-1 promotes the differentiation and adipocytokines secretion via canonical Wnt signaling pathway in primary cultured human preadipocytes. Obes Res Clin Pract 10(4):454–464

    Article  PubMed  Google Scholar 

  23. 23.

    Popovic DS, Mitrovic M, Tomic-Naglic D, Icin T, Bajkin I, Vukovic B, Benc D, Zivanovic Z, Kovacev-Zavisic B, Stokic E (2017) The Wnt/β-catenin signaling pathway sclerostin is a biomarker for early atherosclerosis in obesity. Curr Neurovasc Res 14(3):200–206

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Formisano A, Bammann K, Fraterman A, Hadjigeorgiou C, Hermann D, Iacoviello L, Marild S, Moreno LA, Nagy P, Van Den Bussche K, Veidebaum T, Lauria F, Siani A (2016) Efficacy of neck circumference to identify metabolic syndrome in 3-10 year-old European children: results from IDEFICS study. Nutr Metab Cardiovasc Dis 26(6):510–516

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Baena CP, Lotufo PA, Fonseca MG, Santos IS, Goulart AC, Bansenor IM (2016) Neck circumference is independently associated with cardiometabolic risk factors: cross-sectional analysis from ELSA-Brasil. Metab Syndr Relat Disord 14(3):145–153

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Alfadhli EM, Sandokji AA, Zahid BN, Makkawi MA, Alshenaifi RF, Thani TS, Habeeb HA (2017) Neck circumference as a marker of obesity and a predictor of cardiometabolic risk among Saudi subjects. Saudi Med J 38(12):1219–1223

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Pei X, Liu L, Imam MU, Lu M, Chen Y, Sun P, Guo Y, Xu Y, Ping Z, Fu X (2018) Neck circumference may be a valuable tool for screening individuals with obesity: findings from a young Chinese population and meta-analysis. BMC Public Health 18(1):529

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Fantin F, Comellato G, Rossi AP, Grison E, Zoico E, Mazzali G, Zamboni M (2017) Relationship between neck circumference, insulin resistance and arterial stiffness in overweight and obese subjects. Eur J Prev Cardiol 24(14):1532–1540

    Article  PubMed  Google Scholar 

  29. 29.

    Kim H, Lee SH, Kim BJ, Koh JM (2017) Association between obesity and femoral neck strength according to age, sex, and fat distribution. Osteoporos Int 28(7):2137–2146

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Kim NL, Jang HM, Sim HK, Ko KD, Hwang IC, Suh I (2014) Association of arterial stiffness and osteoporosis in healthy men undergoing screening medical examination. J Bone Metab 21(2):133–141

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Sowers MR, Zheng H, Greendale GA, Neer RM, Cauley JA, Ellis J, Johnson S, Finkelstein JS (2013) Changes in bone resorption across menopause transition: effects of reproductive hormones, body size, and ethnicity. J Clin Endocrinol Metab 98(7):2854–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Sukumar D, Schlussel Y, Riedt CS, Gordon C, Stahl T, Shapses SA (2011) Obesity alters cortical and trabecular bone density and geometry in women. Osteoporos Int 22(2):635–645

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Cifuentes M, Johnson MA, Lewis RD, Heymsfield SB, Chowdhury HA, Modlesky CM, Shapses SA (2003) Bone turnover and body weight relationships differ in normal-weight compared with heavier postmenopausal women. Osteoporos Int 14(2):116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references


The Chair for Biomarkers of Chronic Diseases and the International Scientific Partnership Program (ISPP#0111) at King Saud University, Riyadh, Saudi Arabia, funded the study.

Author information



Corresponding author

Correspondence to N.M. Al-Daghri.

Ethics declarations

Written informed consent was obtained from each participant prior to inclusion. Ethical approval was obtained from the Ethics Committee of the College of Science in KSU, Riyadh, KSA.

Conflicts of interest


Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Albassam, R., Sabico, S., Alnaami, A. et al. Bone metabolism markers are associated with neck circumference in adult Arab women. Osteoporos Int 30, 845–852 (2019).

Download citation


  • Bone turnover markers
  • Neck
  • Obesity
  • Women