Skip to main content

Advertisement

Log in

Bone density and microarchitecture in hepatitis C and HIV-coinfected postmenopausal minority women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We found that HIV+/HCV+ women had 7–8% lower areal bone mineral density (aBMD) by dual-energy x-ray absorptiometry (DXA) at the spine, hip, and radius (p < 0.01) and 5–7% lower volumetric BMD (vBMD) by central quantitative computed tomography (cQCT) at the spine and hip (p < 0.05). These data suggest that true deficits in vBMD may contribute to bone fragility and excess fractures reported in HIV+/HCV+ women.

Introduction

aBMD by DXA is lower in persons coinfected with HIV and HCV (HIV+/HCV+) than with HIV monoinfection (HIV+). However, weight is often also lower with HCV infection, and measurement of aBMD by DXA can be confounded by adiposity; we aimed to determine whether true vBMD is also lower in HIV+/HCV+ coinfection.

Methods

We measured aBMD of the lumbar spine (LS), total hip (TH), femoral neck (FN), and ultradistal radius (UDR) by DXA and vBMD of the spine and hip by cQCT and of the distal radius and tibia by high-resolution peripheral QCT (HRpQCT) in 37 HIV+/HCV+ and 119 HIV+ postmenopausal women. Groups were compared using Student’s t tests with covariate adjustment by multiple regression analysis.

Results

HIV+/HCV+ and HIV+ women were of similar age and race/ethnicity. HIV+/HCV+ women had lower body mass index (BMI) and trunk fat and were more likely to smoke and less likely to have a history of AIDS. In HIV+/HCV+ women, aBMD by DXA was 7–8% lower at the LS, TH, and UDR (p < 0.01). Similarly, vBMD by cQCT was 5–7% lower at the LS and TH (p < 0.05). Between-group differences in LS aBMD and vBMD remained significant after adjustment for BMI, smoking, and AIDS history. Tibial total vBMD by HRpQCT was 10% lower in HIV+/HCV+ women.

Conclusion

HIV+/HCV+ postmenopausal women had significantly lower spine aBMD and vBMD. These deficits in vBMD may contribute to bone fragility and excess fractures reported in HIV+/HCV+ women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rockstroh JK, Mocroft A, Soriano V, Tural C, Losso MH, Horban A, Kirk O, Phillips A, Ledergerber B, Lundgren J, EuroSIDA Study Group (2005) Influence of hepatitis C virus infection on HIV-1 disease progression and response to highly active antiretroviral therapy. J Infect Dis 192(6):992–1002. https://doi.org/10.1086/432762

    Article  PubMed  Google Scholar 

  2. Balla HH, Abdullah S, Mohdfaizal W, Zulkifli R, Sopian K (2013) Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe. J Oleo Sci 62(7):533–539. https://doi.org/10.5650/jos.62.533

    Article  CAS  PubMed  Google Scholar 

  3. Staples CT Jr, Rimland D, Dudas D (1999) Hepatitis C in the HIV (human immunodeficiency virus) Atlanta V.A. (Veterans Affairs Medical Center) Cohort Study (HAVACS): the effect of coinfection on survival. Clin Infect Dis 29:150–154

    Article  PubMed  Google Scholar 

  4. Lo Re V 3rd, Guaraldi G, Leonard MB, Localio AR, Lin J, Orlando G et al (2009) Viral hepatitis is associated with reduced bone mineral density in HIV-infected women but not men. AIDS 23:2191–2198

    Article  PubMed  PubMed Central  Google Scholar 

  5. Young B, Dao CN, Buchacz K, Baker R, Brooks JT, Investigators HIVOS (2011) Increased rates of bone fracture among HIV-infected persons in the HIV Outpatient Study (HOPS) compared with the US general population, 2000-2006. Clin Infect Dis 52(8):1061–1068. https://doi.org/10.1093/cid/ciq242

    Article  PubMed  Google Scholar 

  6. Dong HV, Cortes YI, Shiau S, Yin MT (2014) Osteoporosis and fractures in HIV/hepatitis C virus coinfection: a systematic review and meta-analysis. AIDS 28(14):2119–2131. https://doi.org/10.1097/QAD.0000000000000363

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kovacs A, Karim R, Mack WJ, Xu J, Chen Z, Operskalski E, Frederick T, Landay A, Voris J, Spencer LS, Young MA, Tien PC, Augenbraun M, Strickler HD, al Harthi L (2010) Activation of CD8 T cells predicts progression of HIV infection in women coinfected with hepatitis C virus. J Infect Dis 201(6):823–834. https://doi.org/10.1086/650997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kovacs A, Al-Harthi L, Christensen S, Mack W, Cohen M, Landay A (2008) CD8(+) T cell activation in women coinfected with human immunodeficiency virus type 1 and hepatitis C virus. J Infect Dis 197:1402–1407

    Article  PubMed  PubMed Central  Google Scholar 

  9. Javed F, Yu W, Thornton J, Colt E (2009) Effect of fat on measurement of bone mineral density. Int J Body Compos Res 7(1):37–40

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lo Re V 3rd, Lynn K, Stumm ER, Long J, Nezamzadeh MS, Baker JF et al (2015) Structural bone deficits in HIV/HCV-coinfected, HCV-monoinfected, and HIV-monoinfected women. J Infect Dis 212:924–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yin MT, McMahon DJ, Ferris DC, Zhang CA, Shu A, Staron R, Colon I, Laurence J, Dobkin JF, Hammer SM, Shane E (2010) Low bone mass and high bone turnover in postmenopausal human immunodeficiency virus-infected women. J Clin Endocrinol Metab 95(2):620–629. https://doi.org/10.1210/jc.2009-0708

    Article  CAS  PubMed  Google Scholar 

  12. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936. https://doi.org/10.1016/S0140-6736(02)08761-5

    Article  PubMed  Google Scholar 

  13. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A (2004) Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res 19(6):1006–1012. https://doi.org/10.1359/JBMR.040307

    Article  PubMed  Google Scholar 

  14. Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515. https://doi.org/10.1210/jc.2005-1258

    Article  CAS  PubMed  Google Scholar 

  15. Laib A, Hauselmann HJ, Ruegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6(5-6):329–337

    CAS  PubMed  Google Scholar 

  16. Liu XS, Zhang XH, Sekhon KK, Adams MF, McMahon DJ, Bilezikian JP et al (2010) High-resolution peripheral quantitative computed tomography can assess microstructural and mechanical properties of human distal tibial bone. J Bone Mineral Res: Official J Am Soc Bone Mineral Res 25:746–756

    CAS  Google Scholar 

  17. Stein EM, Liu XS, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Zhang C, Yin PT, Cosman F, Nieves J, Guo XE, Shane E (2010) Abnormal microarchitecture and reduced stiffness at the radius and tibia in postmenopausal women with fractures. J Bone Mineral Res: Official J Am Soc Bone Mineral Res 25(12):2572–2581. https://doi.org/10.1002/jbmr.152

    Article  Google Scholar 

  18. Nickolas TL, Stein E, Cohen A, Thomas V, Staron RB, McMahon DJ, Leonard MB, Shane E (2010) Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrology: JASN 21(8):1371–1380. https://doi.org/10.1681/ASN.2009121208

    Article  Google Scholar 

  19. Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528. https://doi.org/10.1016/j.bone.2010.05.034

    Article  PubMed  PubMed Central  Google Scholar 

  20. Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. Journal Bone Mineral Res: Official J Am Soc Bone Mineral Res 25:983–993

    Article  Google Scholar 

  21. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Mineral Res Official J Am Soc Bone Mineral Res 25:882–890

    Google Scholar 

  22. Hildebrand T, Ruegsegger P (1997) A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 185(1):67–75. https://doi.org/10.1046/j.1365-2818.1997.1340694.x

    Article  Google Scholar 

  23. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  24. Bedimo R, Cutrell J, Zhang S, Drechsler H, Gao A, Brown G, Farukhi I, Castanon R, Tebas P, Maalouf NM (2016) Mechanisms of bone disease in HIV and hepatitis C virus: impact of bone turnover, tenofovir exposure, sex steroids and severity of liver disease. AIDS 30(4):601–608. https://doi.org/10.1097/QAD.0000000000000952

    Article  CAS  PubMed  Google Scholar 

  25. Walker Harris V, Sutcliffe CG, Araujo AB, Chiu GR, Travison TG, Mehta S, et al. Hip bone geometry in HIV/HCV-co-infected men and healthy controls. Osteoporosis international: a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA 2011

  26. Stein EM, Kepley A, Walker M, Nickolas TL, Nishiyama K, Zhou B, Liu XS, McMahon DJ, Zhang C, Boutroy S, Cosman F, Nieves J, Guo XE, Shane E (2014) Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning. J Bone Miner Res 29(5):1101–1109. https://doi.org/10.1002/jbmr.2144

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stein EM, Liu XS, Nickolas TL, Cohen A, McMahon DJ, Zhou B, Zhang C, Kamanda-Kosseh M, Cosman F, Nieves J, Guo XE, Shane E (2012) Microarchitectural abnormalities are more severe in postmenopausal women with vertebral compared to nonvertebral fractures. J Clin Endocrinol Metab 97(10):E1918–E1926. https://doi.org/10.1210/jc.2012-1968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loria I, Albanese C, Giusto M, Galtieri PA, Giannelli V, Lucidi C, di Menna S, Pirazzi C, Corradini SG, Mennini G, Rossi M, Berloco P, Merli M (2010) Bone disorders in patients with chronic liver disease awaiting liver transplantation. Transplant Proc 42(4):1191–1193. https://doi.org/10.1016/j.transproceed.2010.03.096

    Article  CAS  PubMed  Google Scholar 

  29. Carey EJ, Balan V, Kremers WK, Hay JE (2003) Osteopenia and osteoporosis in patients with end-stage liver disease caused by hepatitis C and alcoholic liver disease: not just a cholestatic problem. Liver Trans: Official Publication Am Assoc Study Liver Diseases Int Liver Trans Soc 9(11):1166–1173. https://doi.org/10.1053/jlts.2003.50242

    Article  Google Scholar 

  30. Chen CC, Wang SS, Jeng FS, Lee SD (1996) Metabolic bone disease of liver cirrhosis: is it parallel to the clinical severity of cirrhosis? J Gastroenterol Hepatol 11(5):417–421. https://doi.org/10.1111/j.1440-1746.1996.tb00284.x

    Article  CAS  PubMed  Google Scholar 

  31. Schiefke I, Fach A, Wiedmann M, Aretin AV, Schenker E, Borte G, Wiese M, Moessner J (2005) Reduced bone mineral density and altered bone turnover markers in patients with non-cirrhotic chronic hepatitis B or C infection. World J Gastroenterology: WJG 11(12):1843–1847. https://doi.org/10.3748/wjg.v11.i12.1843

    Article  CAS  Google Scholar 

  32. Gonzalez-Calvin JL, Gallego-Rojo F, Fernandez-Perez R, Casado-Caballero F, Ruiz-Escolano E, Olivares EG (2004) Osteoporosis, mineral metabolism, and serum soluble tumor necrosis factor receptor p55 in viral cirrhosis. J Clin Endocrinol Metab 89(9):4325–4330. https://doi.org/10.1210/jc.2004-0077

    Article  CAS  PubMed  Google Scholar 

  33. Lai JC, Shoback DM, Zipperstein J, Lizaola B, Tseng S, Terrault NA (2015) Bone mineral density, bone turnover, and systemic inflammation in non-cirrhotics with chronic hepatitis C. Dig Dis Sci 60(6):1813–1819. https://doi.org/10.1007/s10620-014-3507-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Redondo-Cerezo E, Casado-Caballero F, Martin-Rodriguez JL, Hernandez-Quero J, Escobar-Jimenez F, Gonzalez-Calvin JL (2014) Bone mineral density and bone turnover in non-cirrhotic patients with chronic hepatitis C and sustained virological response to antiviral therapy with peginterferon-alfa and ribavirin. Osteoporos Int 25(6):1709–1715. https://doi.org/10.1007/s00198-014-2663-z

    Article  CAS  PubMed  Google Scholar 

  35. Arase Y, Suzuki F, Suzuki Y, Akuta N, Kobayashi M, Sezaki H, Hosaka T, Kawamura Y, Yatsuji H, Hirakawa M, Ikeda K, Hsieh SD, Oomoto Y, Amakawa K, Kato H, Kazawa T, Tsuji H, Kobayashi T, Kumada H (2010) Virus clearance reduces bone fracture in postmenopausal women with osteoporosis and chronic liver disease caused by hepatitis C virus. J Med Virol 82(3):390–395. https://doi.org/10.1002/jmv.21691

    Article  CAS  PubMed  Google Scholar 

  36. Balagopal A, Philp FH, Astemborski J, Block TM, Mehta A, Long R, Kirk GD, Mehta SH, Cox AL, Thomas DL, Ray SC (2008) Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. Gastroenterology 135(1):226–233. https://doi.org/10.1053/j.gastro.2008.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health, through Grants AI059884 (MTY) and AI1065200 (ES), and the National Center for Advancing Translational Sciences, through Grant Number UL1TR001873. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Yin.

Ethics declarations

This study was approved by Institutional Review Boards of participating institutions. All participants provided written informed consent.

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

T. Yin, M., RoyChoudhury, A., Nishiyama, K. et al. Bone density and microarchitecture in hepatitis C and HIV-coinfected postmenopausal minority women. Osteoporos Int 29, 871–879 (2018). https://doi.org/10.1007/s00198-017-4354-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4354-z

Keywords

Navigation