Skip to main content

Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis

Abstract

Summary

This study investigated the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis. The results showed an acceptable reproducibility of texture features, and these features could discriminate healthy/osteoporotic fracture cohort with an accuracy of 83%.

Introduction

This aim of this study is to investigate the feasibility of opportunistic osteoporosis screening in routine contrast-enhanced MDCT exams using texture analysis.

Methods

We performed texture analysis at the spine in routine MDCT exams and investigated the effect of intravenous contrast medium (IVCM) (n = 7), slice thickness (n = 7), the long-term reproducibility (n = 9), and the ability to differentiate healthy/osteoporotic fracture cohort (n = 9 age and gender matched pairs). Eight texture features were extracted using gray level co-occurrence matrix (GLCM). The independent sample t test was used to rank the features of healthy/fracture cohort and classification was performed using support vector machine (SVM).

Results

The results revealed significant correlations between texture parameters derived from MDCT scans with and without IVCM (r up to 0.91) slice thickness of 1 mm versus 2 and 3 mm (r up to 0.96) and scan-rescan (r up to 0.59). The performance of the SVM classifier was evaluated using 10-fold cross-validation and revealed an average classification accuracy of 83%.

Conclusions

Opportunistic osteoporosis screening at the spine using specific texture parameters (energy, entropy, and homogeneity) and SVM can be performed in routine contrast-enhanced MDCT exams.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Klibanski A, Adams-Campbell L, Bassford T, Blair SN, Boden SD, Dickersin K, Gifford DR, Glasse L, Goldring SR, Hruska K et al (2001) Osteoporosis prevention, diagnosis, and therapy. J Am Med Assoc 285(6):785–795

    Article  Google Scholar 

  2. Baum T, Garcia EG, Burgkart R, Gordijenko O, Liebl H, Jungmann PM, Gruber M, Zahel T, Rummeny EJ, Waldt S et al (2015) Osteoporosis imaging: effects of bone preservation on mdct-based trabecular bone microstructure parameters and finite element models. BMC Med Imaging 15(1):1

    Article  Google Scholar 

  3. Mookiah MRK, Baum T, Mei K, Kopp FK, Kaissis G, Foehr P, Noel PB, Kirschke JS, Subburaj K (2017) Effect of radiation dose reduction on texture measures of trabecular bone microstructure: an in vitro study. J Bone Miner Metab:1–13. https://doi.org/10.1007/s00774-017-0836-5

  4. Bauer JS, Sidorenko I, Mueller D, Baum T, Issever AS, Eckstein F, Rummeny EJ, Link TM, Raeth CW (2014) Prediction of bone strength by μ ct and mdct-based finite-element-models: how much spatial resolution is needed? Eur J Radiol 83(1):e36–e42

    Article  PubMed  Google Scholar 

  5. Mei K, Kopp FK, Bippus R, Köhler T, Schwaiger BJ, Gersing AS, Fehringer A, Sauter A, Münzel D, Pfeiffer F et al (2017) Is multidetector ct-based bone mineral density and quantitative bone microstructure assessment at the spine still feasible using ultra-low tube current and sparse sampling? Eur Radiol 27(12):5261–5271

  6. Anitha D, Subburaj K, Mei K, Kopp FK, Foehr P, Noel PB, Kirschke JS, Baum T (2016) Effects of dose reduction on bone strength prediction using finite element analysis. Sci Rep 6:38441

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Showalter C, Clymer BD, Richmond B, Powell K (2006) Three-dimensional texture analysis of cancellous bone cores evaluated at clinical ct resolutions. Osteoporos Int 17(2):259–266

    Article  PubMed  Google Scholar 

  8. Petrou M, Sevilla PG (2006) Image processing: dealing with texture, vol 1. Wiley Online Library

  9. Pachon JH, Yadava G, Pal D, Hsieh J (2012) Image quality evaluation of iterative ct reconstruction algorithms: a perspective from spatial domain noise texture measures. In: Proceedings of the SPIE, vol 8313, p 83132k

  10. Valentinitsch A, Patsch JM, Burghardt AJ, Link TM, Majumdar S, Fischer L, Schueller-Weidekamm C, Resch H, Kainberger F, Langs G (2013) Computational identification and quantification of trabecular microarchitecture classes by 3-d texture analysis-based clustering. Bone 54(1):133–140

    Article  PubMed  Google Scholar 

  11. Vrtiska TJ, Hartman RP, Kofler JM, Bruesewitz MR, King BF, McCollough CH (2009) Spatial resolution and radiation dose of a 64-mdct scanner compared with published ct urography protocols. Am J Roentgenol 192(4):941–948

    Article  Google Scholar 

  12. Wang H-y, Su Z-h, Xu X, Sun Z-p, Duan F-x, Song Y-y, Li L, Wang Y-w, Ma X, Guo A-t et al (2016) Dynamic contrast-enhanced mr imaging in renal cell carcinoma: reproducibility of histogram analysis on pharmacokinetic parameters. Sci Rep 6:29146

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Wolf I, Vetter M, Wegner I, Böttger T, Nolden M, Schöbinger M, Hastenteufel M, Kunert T, Meinzer H-P (2005) The medical imaging interaction toolkit. Med Image Anal 9(6):594–604

    Article  PubMed  Google Scholar 

  14. Müller D, Bauer JS, Zeile M, Rummeny EJ, Link TM (2008) Significance of sagittal reformations in routine thoracic and abdominal multislice ct studies for detecting osteoporotic fractures and other spine abnormalities. Eur Radiol 18(8):1696–1702

    Article  PubMed  Google Scholar 

  15. Haralick RM, Shanmugam K et al (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

  16. Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint fdg-pet and mri texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60(14):5471

    Article  PubMed  Google Scholar 

  17. Cortes C, Vapnik V (1995) Support vector machine. Mach Learn 20(3):273–297

    Google Scholar 

  18. Bland JM, Altman D (1986) Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet 327(8476):307–310

    Article  Google Scholar 

  19. Zhao Q, Shi C-Z, Luo L-P (2014) Role of the texture features of images in the diagnosis of solitary pulmonary nodules in different sizes. Chin J Cancer Res 26(4):451

    PubMed  PubMed Central  Google Scholar 

  20. Mookiah MRK, Acharya UR, Lim CM, Petznick A, Suri JS (2012) Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features. Knowl-Based Syst 33:73–82

    Article  Google Scholar 

  21. Ferrari RJ, Rangayyan RM, Desautels JL, Frère AF (2001) Analysis of asymmetry in mammograms via directional filtering with gabor wavelets. IEEE Trans Med Imaging 20(9):953–964

    CAS  Article  PubMed  Google Scholar 

  22. Qian W, Zhukov T, Song D, Tockman MS (2007) Computerized analysis of cellular features and biomarkers for cytologic diagnosis of early lung cancer. Anal Quant Cytol Histol/the International Academy of Cytology [and] American Society of Cytology 29(2):103–111

    Google Scholar 

  23. Nielsen B, Hveem TS, Kildal W, Abeler VM, Kristensen GB, Albregtsen F, Danielsen HE (2015) Entropy-based adaptive nuclear texture features are independent prognostic markers in a total population of uterine sarcomas. Cytometry A 87(4):315–325

    CAS  Article  PubMed  Google Scholar 

  24. Ferrari RJ, Rangayyan RM, Desautels JL, Frere AF (2001) Analysis of asymmetry in mammograms via directional filtering with gabor wavelets. IEEE Trans Med Imaging 20(9):953–964

    CAS  Article  PubMed  Google Scholar 

  25. Dhara AK, Mukhopadhyay S, Khandelwal N (2013) 3D texture analysis of solitary pulmonary nodules using co-occurrence matrix from volumetric lung ct images. In: SPIE medical imaging, international society for optics and photonics, pp 867039–867039

  26. Raja J, Khan M, Ramachandra V, Al-Kadi O Texture analysis of ct images in the characterization of oral cancers involving buccal mucosa. Dentomaxillofac Radiol 41(6):475–480

Download references

Funding

This work was supported by the Deutsche Forschungsgemeinschaft DFG BA 4906/2-1 (Thomas Baum) and Singapore University of Technology and Design (SUTD) Start-up Research Grant SRG EPD 2015 093 (Karupppasamy Subburaj). The funding agencies had no role in study design, data collection, and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Subburaj.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 136 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mookiah, M.R.K., Rohrmeier, A., Dieckmeyer, M. et al. Feasibility of opportunistic osteoporosis screening in routine contrast-enhanced multi detector computed tomography (MDCT) using texture analysis. Osteoporos Int 29, 825–835 (2018). https://doi.org/10.1007/s00198-017-4342-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4342-3

Keywords

  • Opportunistic osteoporosis screening
  • Spine
  • Texture analysis
  • Trabecular bone microstructure