Danshen (Salvia miltiorrhiza) protects ovariectomized rats fed with high-saturated fat-sucrose diet from bone loss

Abstract

Summary

Dietary patterns may interfere with the efficacy of herbal intervention. Our results demonstrated the protective effects of Salvia miltiorrhiza aqueous extract (SMA) on bone metabolism were influenced by levels of dietary fat and sucrose in ovariectomized (OVX) rats through its actions on attenuating lipid deposition and oxidative stress in rats.

Introduction

Salvia miltiorrhiza (SM), also known as Danshen, has been tested as an osteoporosis treatment in a series of small, short human trials that generally report improvements in bone property. However, dietary patterns may interfere with the effects of herbal intervention. We hypothesized that dietary fat and sucrose levels could influence the effects of SM supplementation on bone in estrogen-deficient animals.

Methods

Six-month-old Sprague-Dawley sham or OVX rats were fed either a low-saturated fat-sucrose (LFS, a diet that was similar in composition to normal rat chow) or a high-fat-sucrose (HFS) diet and OVX rats were treated (8 rats/group) with SM aqueous extract (SMA, 600 mg/kg/day), 17β-estradiol (1 mg/kg/day), or vehicle for 12 weeks.

Results

SMA significantly improved bone properties as revealed by the increase in trabecular bone mineral density and decrease in trabecular separation at proximal metaphysis of the tibia (PT) in HFS-fed OVX rats, but not in LFS-fed OVX rats. SMA greatly reduced lipid deposition and malondialdehyde levels, improved the activities of superoxide dismutase, catalase, and glutathione peroxidase in the livers of HFS-fed OVX rats. SMA could directly improve the proliferation and differentiation in vitro in an H2O2-induced preosteoblast cell model by attenuating cellular reactive oxygen species levels.

Conclusions

The protective effects of SMA on bone metabolism were influenced by dietary fat and sucrose levels in OVX rats. The ability of SMA to reduce bone loss in HFS-fed OVX rats was associated with the attenuation of lipid deposition and oxidative stress levels.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

ANOVA:

analysis of variance

ALP:

alkaline phosphatase

BMC:

bone mineral content

BMD:

bone mineral density

BV/TV:

ratio of bone volume to total volume

Ca:

calcium

CAT:

catalase

Conn-Des:

connectivity density

Cr:

creatinine

Ct.Th:

average cortical thickness

Ct.V/Tt.V:

ratio of cortical bone volume to total volume

DA:

degree of anisotropy

DCFH-DA:

2′,7′-dichlorodihydrofluorescin diacetate

FBS:

fetal bovine serum

GPx:

glutathione peroxidase

HFS:

high fat-sucrose

H2O2 :

hydrogen peroxide

LFS:

low fat-sucrose

Ma.Ar:

marrow area

MDA:

malondialdehyde

MEM:

minimal essential medium eagle

μCT:

microcomputed tomography

MT:

tibia midshaft

MTS:

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium

OS:

oxidative stress

OVX:

ovariectomized

P:

phosphorus

PMS:

phenazine methosulfate

PT:

proximal metaphysis of the tibia

ROS:

reactive oxygen species

SEM:

standard error of mean

SHAM:

sham-operation

SM:

Salvia miltiorrhiza

SMA:

Salvia miltiorrhiza aqueous extract

SMI:

structure model index

SOD:

superoxide dismutase

Tb. BMD:

trabecular bone mineral density

Tb.N:

trabecular number

Tb.Sp:

trabecular separation

Tb.Th:

trabecular thickness

Tt.Ar:

total cross-sectional area inside the periosteal envelope

References

  1. 1.

    Seeman E (2003) Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int 14(Suppl 3):S2–S8

    Article  PubMed  Google Scholar 

  2. 2.

    Zhou Q, Zhu L, Zhang D et al (2016) Oxidative stress-related biomarkers in postmenopausal osteoporosis: a systematic review and meta-analyses. Dis Markers 2016:7067984

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Callaway DA, Jiang JX (2015) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33(4):359–370

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Lee YJ, Hong JY, Kim SC et al (2015) The association between oxidative stress and bone mineral density according to menopausal status of Korean women. Obstet Gynecol Sci 58(1):46–52

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Basu S, Michaelsson K, Olofsson H et al (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288(1):275–279

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Sharma T, Islam N, Ahmad J et al (2015) Correlation between bone mineral density and oxidative stress in postmenopausal women. Indian J Endocrinol Metab 19(4):491–497

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Sanchez-Rodriguez MA, Ruiz-Ramos M, Correa-Munoz E et al (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Almeida M, O’Brien CA (2013) Basic biology of skeletal aging: role of stress response pathways. J Gerontol A Biol Sci Med Sci 68(10):1197–1208

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Finck H, Hart AR, Lentjes MA et al (2015) Cross-sectional and prospective associations between dietary and plasma vitamin C, heel bone ultrasound, and fracture risk in men and women in the European Prospective Investigation into Cancer in Norfolk cohort. J Am J Clin Nutr 102(6):1416–1424

    CAS  Article  Google Scholar 

  10. 10.

    Talaulikar VS, Chambers T, Manyonda I (2012) Exploiting the antioxidant potential of a common vitamin: could vitamin C prevent postmenopausal osteoporosis? J Obstet Gynaecol Res 38(1):253–257

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Sahni S, Hannan MT, Gagnon D et al (2009) Protective effect of total and supplemental vitamin C intake on the risk of hip fracture—a 17-year follow-up from the Framingham Osteoporosis Study. Osteoporos Int 20(11):1853–1861

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Kreijkamp-Kaspers S, Kok L, Grobbee DE et al (2004) Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: a randomized controlled trial. JAMA 292(1):65–74

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Alekel DL, Germain AS, Peterson CT et al (2000) Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 72(3):844–852

    CAS  PubMed  Google Scholar 

  14. 14.

    Liu Y, Xu J, Guo Y et al (2015) Ameliorative effect of vanadyl(IV)-ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice. J Trace Elem Med Biol 32:155–161

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Tintut Y, Morony S, Demer LL (2004) Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol 24(2):e6–10

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Brodeur MR, Brissette L, Falstrault L et al (2008) Influence of oxidized low-density lipoproteins (LDL) on the viability of osteoblastic cells. Free Radic Biol Med 44(4):506–517

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Dong XL, Li CM, Cao SS et al (2016) A high-saturated-fat, high-sucrose diet aggravates bone loss in ovariectomized female rats. J Nutr 146(6):1172–1179

  18. 18.

    Li MH, Chen JM, Peng Y et al (2008) Investigation of Danshen and related medicinal plants in China. J Ethnopharmacol 120(3):419–426

    Article  PubMed  Google Scholar 

  19. 19.

    Liu Y, Liu JP, Xia Y (2014) Chinese herbal medicines for treating osteoporosis. Cochrane Database Syst Rev 3:1–127

  20. 20.

    Su CY, Ming QL, Rahman K et al (2015) Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 13(3):163–182

    CAS  PubMed  Google Scholar 

  21. 21.

    Li CM, Dong XL, Fan XD et al (2013) Aqueous extract of Danshen (Salvia miltiorrhiza Bunge) protects ovariectomized rats fed with high-fat diet from endothelial dysfunction. Menopause 20(1):100–109

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Strom JO, Theodorsson A, Ingberg E et al (2012) Ovariectomy and 17beta-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp 64:4013–4016

  23. 23.

    Idris AI (2012) Ovariectomy/orchidectomy in rodents. Methods Mol Biol 816:545–551

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Zhang Y, Lai WP, Leung PC et al (2008) Improvement of Ca balance by Fructus Ligustri Lucidi extract in aged female rats. Osteoporos Int 19(2):235–242

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Li CM, Guo YQ, Dong XL et al (2014) Ethanolic extract of rhizome of Ligusticum chuanxiong Hort. (chuanxiong) enhances endothelium-dependent vascular reactivity in ovariectomized rats fed with high-fat diet. Food Funct 5(10):2475–2485

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Li CM, Wu JH, Yang RF et al (2013) Ligusticum chuanxiong prevents ovariectomy-induced liver and vascular damage in rats. Am J Chin Med 41(4):831–848

    Article  PubMed  Google Scholar 

  27. 27.

    Cui Y, Bhandary B, Marahatta A et al (2011) Characterization of Salvia Miltiorrhiza ethanol extract as an anti-osteoporotic agent. BMC Complement Altern Med 11(1):120

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Miao B, Wang J, Zhu Y et al (2012) Experimental study on effect of Salvia miltiorrhiza on alveolar bone metabolism and variation in bone mass in diabetic rats. Zhongguo Zhong Yao Za Zhi 37(11):1659–1662

    PubMed  Google Scholar 

  29. 29.

    Wang Y, Wang XX, Zhang LN et al (2012) Effects of traditional Chinese medicine on bone remodeling during orthodontic tooth movement. J Ethnopharmacol 141(2):642–646

    Article  PubMed  Google Scholar 

  30. 30.

    Cui L, Li T, Liu Y et al (2012) Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PLoS One 7(4):e34647

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Wu X, Li Z, Yang Z et al (2012) Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-kappaB ligand-induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+-nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. J Bone Miner Res 27(6):1298–1308

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Zhang ZP, You TT, Zou LY et al (2008) Effect of Danshen root compound on blood lipid and bone biomechanics in mice with hyperlipemia-induced osteoporosis. Nan Fang Yi Ke Da Xue Xue Bao 28(9):1550–1553

    CAS  PubMed  Google Scholar 

  33. 33.

    Cui L, Wu T, Liu YY et al (2004) Tanshinone prevents cancellous bone loss induced by ovariectomy in rats. Acta Pharmacol Sin 25(5):678–684

    CAS  PubMed  Google Scholar 

  34. 34.

    Xia MF, Lin HD, Yan HM et al (2016) The association of liver fat content and serum alanine aminotransferase with bone mineral density in middle-aged and elderly Chinese men and postmenopausal women. J Transl Med 14:11

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Verma S, Rajaratnam JH, Denton J et al (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55(9):693–698

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Cui L, Liu YY, Wu T et al (2009) Osteogenic effects of D+beta-3,4-dihydroxyphenyl lactic acid (salvianic acid A, SAA) on osteoblasts and bone marrow stromal cells of intact and prednisone-treated rats. Acta Harmacol Sin 30(3):321–332

    CAS  Article  Google Scholar 

  37. 37.

    Cao L, Bu R, Oakley JI et al (2003) Estrogen receptor-beta modulates synthesis of bone matrix proteins in human osteoblast-like MG63 cells. J Cell Biochem 89(1):152–164

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Zhang YJ, Wu L, Zhang QL et al (2011) Pharmacokinetics of phenolic compounds of Danshen extract in rat blood and brain by microdialysis sampling. J Ethnopharmacol 136(1):129–136

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Xu Y, Chen T, Li X et al (2016) Salvia miltiorrhiza bunge increases estrogen level without side effects on reproductive tissues in immature/ovariectomized mice. Aging 9(1):156–172

Download references

Acknowledgements

We thank the Shenzhen Key Laboratory of Food Biological Safety and the State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) for their support.

Funding

This work was supported by the Shenzhen Basic Research Program (grant number JCYJ20140819153305696), the Shenzhen Basic Research Program (grant number JCY201506301152579000), the National Natural Science Foundation of China (grant number 81528024), and the National Natural Science Foundation of China (grant number 81601110).

Author information

Affiliations

Authors

Contributions

Xiao Li Dong and Man Sau Wong designed the experiment; Xiao Li Dong, Wen Xuan Yu, and Chun Mei Li conducted most of the experiments and analyzed the data; Shan He did cell culture experiments; Li Ping Zhou detected the oxidant/antioxidant levels in the liver of the experiment; Chui Wa Poon analyzed the microCT data; Man Sau Wong had primary responsibility for the final content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to M. S. Wong.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, X.L., Yu, W.X., Li, C.M. et al. Danshen (Salvia miltiorrhiza) protects ovariectomized rats fed with high-saturated fat-sucrose diet from bone loss. Osteoporos Int 29, 223–235 (2018). https://doi.org/10.1007/s00198-017-4254-2

Download citation

Keywords

  • Bone loss
  • Estrogen deficiency
  • High-saturated fat-sucrose diet
  • Oxidative stress
  • Salvia miltiorrhiza aqueous extract