Osteoporosis International

, Volume 29, Issue 1, pp 223–235 | Cite as

Danshen (Salvia miltiorrhiza) protects ovariectomized rats fed with high-saturated fat-sucrose diet from bone loss

  • X. L. Dong
  • W. X. Yu
  • C. M. Li
  • S. He
  • L. P. Zhou
  • C. W. Poon
  • M. S. WongEmail author
Original Article



Dietary patterns may interfere with the efficacy of herbal intervention. Our results demonstrated the protective effects of Salvia miltiorrhiza aqueous extract (SMA) on bone metabolism were influenced by levels of dietary fat and sucrose in ovariectomized (OVX) rats through its actions on attenuating lipid deposition and oxidative stress in rats.


Salvia miltiorrhiza (SM), also known as Danshen, has been tested as an osteoporosis treatment in a series of small, short human trials that generally report improvements in bone property. However, dietary patterns may interfere with the effects of herbal intervention. We hypothesized that dietary fat and sucrose levels could influence the effects of SM supplementation on bone in estrogen-deficient animals.


Six-month-old Sprague-Dawley sham or OVX rats were fed either a low-saturated fat-sucrose (LFS, a diet that was similar in composition to normal rat chow) or a high-fat-sucrose (HFS) diet and OVX rats were treated (8 rats/group) with SM aqueous extract (SMA, 600 mg/kg/day), 17β-estradiol (1 mg/kg/day), or vehicle for 12 weeks.


SMA significantly improved bone properties as revealed by the increase in trabecular bone mineral density and decrease in trabecular separation at proximal metaphysis of the tibia (PT) in HFS-fed OVX rats, but not in LFS-fed OVX rats. SMA greatly reduced lipid deposition and malondialdehyde levels, improved the activities of superoxide dismutase, catalase, and glutathione peroxidase in the livers of HFS-fed OVX rats. SMA could directly improve the proliferation and differentiation in vitro in an H2O2-induced preosteoblast cell model by attenuating cellular reactive oxygen species levels.


The protective effects of SMA on bone metabolism were influenced by dietary fat and sucrose levels in OVX rats. The ability of SMA to reduce bone loss in HFS-fed OVX rats was associated with the attenuation of lipid deposition and oxidative stress levels.


Bone loss Estrogen deficiency High-saturated fat-sucrose diet Oxidative stress Salvia miltiorrhiza aqueous extract 



analysis of variance


alkaline phosphatase


bone mineral content


bone mineral density


ratio of bone volume to total volume






connectivity density




average cortical thickness


ratio of cortical bone volume to total volume


degree of anisotropy


2′,7′-dichlorodihydrofluorescin diacetate


fetal bovine serum


glutathione peroxidase


high fat-sucrose


hydrogen peroxide


low fat-sucrose


marrow area




minimal essential medium eagle


microcomputed tomography


tibia midshaft




oxidative stress






phenazine methosulfate


proximal metaphysis of the tibia


reactive oxygen species


standard error of mean




Salvia miltiorrhiza


Salvia miltiorrhiza aqueous extract


structure model index


superoxide dismutase


trabecular bone mineral density


trabecular number


trabecular separation


trabecular thickness


total cross-sectional area inside the periosteal envelope



We thank the Shenzhen Key Laboratory of Food Biological Safety and the State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) for their support.

Author contributions

Xiao Li Dong and Man Sau Wong designed the experiment; Xiao Li Dong, Wen Xuan Yu, and Chun Mei Li conducted most of the experiments and analyzed the data; Shan He did cell culture experiments; Li Ping Zhou detected the oxidant/antioxidant levels in the liver of the experiment; Chui Wa Poon analyzed the microCT data; Man Sau Wong had primary responsibility for the final content. All authors read and approved the final manuscript.

Funding information

This work was supported by the Shenzhen Basic Research Program (grant number JCYJ20140819153305696), the Shenzhen Basic Research Program (grant number JCY201506301152579000), the National Natural Science Foundation of China (grant number 81528024), and the National Natural Science Foundation of China (grant number 81601110).

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Seeman E (2003) Reduced bone formation and increased bone resorption: rational targets for the treatment of osteoporosis. Osteoporos Int 14(Suppl 3):S2–S8CrossRefPubMedGoogle Scholar
  2. 2.
    Zhou Q, Zhu L, Zhang D et al (2016) Oxidative stress-related biomarkers in postmenopausal osteoporosis: a systematic review and meta-analyses. Dis Markers 2016:7067984CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Callaway DA, Jiang JX (2015) Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J Bone Miner Metab 33(4):359–370CrossRefPubMedGoogle Scholar
  4. 4.
    Lee YJ, Hong JY, Kim SC et al (2015) The association between oxidative stress and bone mineral density according to menopausal status of Korean women. Obstet Gynecol Sci 58(1):46–52CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Basu S, Michaelsson K, Olofsson H et al (2001) Association between oxidative stress and bone mineral density. Biochem Biophys Res Commun 288(1):275–279CrossRefPubMedGoogle Scholar
  6. 6.
    Sharma T, Islam N, Ahmad J et al (2015) Correlation between bone mineral density and oxidative stress in postmenopausal women. Indian J Endocrinol Metab 19(4):491–497CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sanchez-Rodriguez MA, Ruiz-Ramos M, Correa-Munoz E et al (2007) Oxidative stress as a risk factor for osteoporosis in elderly Mexicans as characterized by antioxidant enzymes. BMC Musculoskelet Disord 8:124CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Almeida M, O’Brien CA (2013) Basic biology of skeletal aging: role of stress response pathways. J Gerontol A Biol Sci Med Sci 68(10):1197–1208CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Finck H, Hart AR, Lentjes MA et al (2015) Cross-sectional and prospective associations between dietary and plasma vitamin C, heel bone ultrasound, and fracture risk in men and women in the European Prospective Investigation into Cancer in Norfolk cohort. J Am J Clin Nutr 102(6):1416–1424CrossRefGoogle Scholar
  10. 10.
    Talaulikar VS, Chambers T, Manyonda I (2012) Exploiting the antioxidant potential of a common vitamin: could vitamin C prevent postmenopausal osteoporosis? J Obstet Gynaecol Res 38(1):253–257CrossRefPubMedGoogle Scholar
  11. 11.
    Sahni S, Hannan MT, Gagnon D et al (2009) Protective effect of total and supplemental vitamin C intake on the risk of hip fracture—a 17-year follow-up from the Framingham Osteoporosis Study. Osteoporos Int 20(11):1853–1861CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kreijkamp-Kaspers S, Kok L, Grobbee DE et al (2004) Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: a randomized controlled trial. JAMA 292(1):65–74CrossRefPubMedGoogle Scholar
  13. 13.
    Alekel DL, Germain AS, Peterson CT et al (2000) Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. Am J Clin Nutr 72(3):844–852PubMedGoogle Scholar
  14. 14.
    Liu Y, Xu J, Guo Y et al (2015) Ameliorative effect of vanadyl(IV)-ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice. J Trace Elem Med Biol 32:155–161CrossRefPubMedGoogle Scholar
  15. 15.
    Tintut Y, Morony S, Demer LL (2004) Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol 24(2):e6–10CrossRefPubMedGoogle Scholar
  16. 16.
    Brodeur MR, Brissette L, Falstrault L et al (2008) Influence of oxidized low-density lipoproteins (LDL) on the viability of osteoblastic cells. Free Radic Biol Med 44(4):506–517CrossRefPubMedGoogle Scholar
  17. 17.
    Dong XL, Li CM, Cao SS et al (2016) A high-saturated-fat, high-sucrose diet aggravates bone loss in ovariectomized female rats. J Nutr 146(6):1172–1179Google Scholar
  18. 18.
    Li MH, Chen JM, Peng Y et al (2008) Investigation of Danshen and related medicinal plants in China. J Ethnopharmacol 120(3):419–426CrossRefPubMedGoogle Scholar
  19. 19.
    Liu Y, Liu JP, Xia Y (2014) Chinese herbal medicines for treating osteoporosis. Cochrane Database Syst Rev 3:1–127Google Scholar
  20. 20.
    Su CY, Ming QL, Rahman K et al (2015) Salvia miltiorrhiza: traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 13(3):163–182PubMedGoogle Scholar
  21. 21.
    Li CM, Dong XL, Fan XD et al (2013) Aqueous extract of Danshen (Salvia miltiorrhiza Bunge) protects ovariectomized rats fed with high-fat diet from endothelial dysfunction. Menopause 20(1):100–109CrossRefPubMedGoogle Scholar
  22. 22.
    Strom JO, Theodorsson A, Ingberg E et al (2012) Ovariectomy and 17beta-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp 64:4013–4016Google Scholar
  23. 23.
    Idris AI (2012) Ovariectomy/orchidectomy in rodents. Methods Mol Biol 816:545–551CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang Y, Lai WP, Leung PC et al (2008) Improvement of Ca balance by Fructus Ligustri Lucidi extract in aged female rats. Osteoporos Int 19(2):235–242CrossRefPubMedGoogle Scholar
  25. 25.
    Li CM, Guo YQ, Dong XL et al (2014) Ethanolic extract of rhizome of Ligusticum chuanxiong Hort. (chuanxiong) enhances endothelium-dependent vascular reactivity in ovariectomized rats fed with high-fat diet. Food Funct 5(10):2475–2485CrossRefPubMedGoogle Scholar
  26. 26.
    Li CM, Wu JH, Yang RF et al (2013) Ligusticum chuanxiong prevents ovariectomy-induced liver and vascular damage in rats. Am J Chin Med 41(4):831–848CrossRefPubMedGoogle Scholar
  27. 27.
    Cui Y, Bhandary B, Marahatta A et al (2011) Characterization of Salvia Miltiorrhiza ethanol extract as an anti-osteoporotic agent. BMC Complement Altern Med 11(1):120CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Miao B, Wang J, Zhu Y et al (2012) Experimental study on effect of Salvia miltiorrhiza on alveolar bone metabolism and variation in bone mass in diabetic rats. Zhongguo Zhong Yao Za Zhi 37(11):1659–1662PubMedGoogle Scholar
  29. 29.
    Wang Y, Wang XX, Zhang LN et al (2012) Effects of traditional Chinese medicine on bone remodeling during orthodontic tooth movement. J Ethnopharmacol 141(2):642–646CrossRefPubMedGoogle Scholar
  30. 30.
    Cui L, Li T, Liu Y et al (2012) Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PLoS One 7(4):e34647CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wu X, Li Z, Yang Z et al (2012) Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-kappaB ligand-induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+-nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. J Bone Miner Res 27(6):1298–1308CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang ZP, You TT, Zou LY et al (2008) Effect of Danshen root compound on blood lipid and bone biomechanics in mice with hyperlipemia-induced osteoporosis. Nan Fang Yi Ke Da Xue Xue Bao 28(9):1550–1553PubMedGoogle Scholar
  33. 33.
    Cui L, Wu T, Liu YY et al (2004) Tanshinone prevents cancellous bone loss induced by ovariectomy in rats. Acta Pharmacol Sin 25(5):678–684PubMedGoogle Scholar
  34. 34.
    Xia MF, Lin HD, Yan HM et al (2016) The association of liver fat content and serum alanine aminotransferase with bone mineral density in middle-aged and elderly Chinese men and postmenopausal women. J Transl Med 14:11CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Verma S, Rajaratnam JH, Denton J et al (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55(9):693–698CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cui L, Liu YY, Wu T et al (2009) Osteogenic effects of D+beta-3,4-dihydroxyphenyl lactic acid (salvianic acid A, SAA) on osteoblasts and bone marrow stromal cells of intact and prednisone-treated rats. Acta Harmacol Sin 30(3):321–332CrossRefGoogle Scholar
  37. 37.
    Cao L, Bu R, Oakley JI et al (2003) Estrogen receptor-beta modulates synthesis of bone matrix proteins in human osteoblast-like MG63 cells. J Cell Biochem 89(1):152–164CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang YJ, Wu L, Zhang QL et al (2011) Pharmacokinetics of phenolic compounds of Danshen extract in rat blood and brain by microdialysis sampling. J Ethnopharmacol 136(1):129–136CrossRefPubMedGoogle Scholar
  39. 39.
    Xu Y, Chen T, Li X et al (2016) Salvia miltiorrhiza bunge increases estrogen level without side effects on reproductive tissues in immature/ovariectomized mice. Aging 9(1):156–172Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • X. L. Dong
    • 1
    • 2
  • W. X. Yu
    • 1
    • 2
  • C. M. Li
    • 1
    • 3
  • S. He
    • 2
  • L. P. Zhou
    • 2
  • C. W. Poon
    • 2
  • M. S. Wong
    • 1
    • 2
    Email author
  1. 1.State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation)The Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenPeople’s Republic of China
  2. 2.Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China
  3. 3.Department of Biochemistry and Molecular BiologyGuangdong Pharmaceutical CollegeGuangzhouPeople’s Republic of China

Personalised recommendations