Osteoporosis International

, Volume 28, Issue 10, pp 2967–2973 | Cite as

Effect of denosumab on trabecular bone score in postmenopausal women with osteoporosis

  • M. R. McClungEmail author
  • K. Lippuner
  • M. L. Brandi
  • J. R. Zanchetta
  • H. G. Bone
  • R. Chapurlat
  • D. Hans
  • A. Wang
  • C. Zapalowski
  • C. Libanati
Original Article



Trabecular bone score (TBS) assesses bone quality in the lumbar spine using dual-energy X-ray absorptiometry (DXA) scans. In postmenopausal women with osteoporosis, denosumab significantly improved TBS independently of bone mineral density (BMD). This practical technique may have a role in managing patients with osteoporosis.


TBS, a gray-level texture index determined from lumbar spine DXA scans, correlates with bone microarchitecture and enhances assessment of vertebral fracture risk independently of BMD. In the FREEDOM study, denosumab increased BMD and reduced new vertebral fractures in postmenopausal women with osteoporosis. This retrospective analysis explored the effect of denosumab on TBS and the association between TBS and BMD in FREEDOM.


Postmenopausal women with lumbar spine or total hip BMD T-score <−2.5 and −4.0 or higher at both sites received placebo or denosumab 60 mg subcutaneously every 6 months. TBS indices were determined from DXA scans at baseline and months 12, 24, and 36 in a subset of 285 women (128 placebo, 157 denosumab) who had TBS values at baseline and ≥1 postbaseline visit.


Baseline characteristics were comparable between treatment groups; mean (SD) lumbar spine BMD T-score was −2.79 (0.64), and mean (standard deviation [SD]) TBS was 1.200 (0.101) overall. In the placebo group, BMD and TBS increased by ≤0.2% or decreased from baseline at each visit. In the denosumab group, progressive increases from baseline at 12, 24, and 36 months were observed for BMD (5.7, 7.8, and 9.8%) and TBS (1.4, 1.9, and 2.4%). Percentage changes in TBS were statistically significant compared with baseline (p < 0.001) and placebo (p ≤ 0.014). TBS was largely unrelated to BMD, regardless of treatment, either at baseline or for annual changes from baseline (all r 2 ≤ 0.06).


In postmenopausal women with osteoporosis, denosumab significantly improved TBS independently of BMD.


Denosumab Postmenopausal women Trabecular bone score 



This work was supported by Amgen Inc. Jonathan Latham (PharmaScribe, LLC, on behalf of Amgen Inc.) and Mandy Suggitt (Amgen Inc.) provided medical writing support.

Compliance with ethical standards

Ethical approval

The study complied with the principles of the Declaration of Helsinki. Institutional review boards and ethics committees approved the protocol and consent process. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Subjects provided informed consent to participate.

Conflicts of interest

MR McClung: consultancy—Amgen Inc., Merck, and Radius; and lecture fees—Amgen Inc. and Merck.

K Lippuner: consultancy and principal investigator—Amgen Inc. and MSD.

ML Brandi: research grants—Amgen Inc.

JR Zanchetta: lecture fees—Amgen Inc. and GlaxoSmithKline.

HG Bone: research grants—Amgen Inc. and Merck; consulting fees/honoraria—Amgen Inc., Merck, Radius, and Mission; lecture fees—Amgen Inc.; travel support—Amgen Inc.; fees for review activities—Amgen Inc.; and development of educational presentations—Vindico.

R Chapurlat: research grants, travel support, consultancy, and lecture fees—Amgen Inc.

D Hans: received fees per scan from Amgen to make central calculation of TBS on publication; board membership, stock/stock options, and employment—Medimaps Group; and co-owner of the TBS patent.

A Wang: employee and stock/stock options—Amgen Inc.

C Zapalowski: employee—Radius Health; prior employment—Amgen Inc.; and stock/stock options—Amgen Inc. and Radius Health.

C Libanati: employee—UCB Pharma; and stock/stock options—UCB Pharma and Amgen Inc.


  1. 1.
    (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129Google Scholar
  2. 2.
    Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, Eisman JA, Fujiwara S, Kroger H, Mellstrom D, Meunier PJ, Melton LJ 3rd, O’Neill T, Pols H, Reeve J, Silman A, Tenenhouse A (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194CrossRefPubMedGoogle Scholar
  3. 3.
    Hordon LD, Raisi M, Aaron JE, Paxton SK, Beneton M, Kanis JA (2000) Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: I. Two-dimensional histology. Bone 27:271–276CrossRefPubMedGoogle Scholar
  4. 4.
    Majumdar S (1998) A review of magnetic resonance (MR) imaging of trabecular bone micro-architecture: contribution to the prediction of biomechanical properties and fracture prevalence. Technol Health Care 6:321–327PubMedGoogle Scholar
  5. 5.
    Pothuaud L, Carceller P, Hans D (2008) Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone 42:775–787CrossRefPubMedGoogle Scholar
  6. 6.
    Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D (2009) Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom 12:170–176CrossRefPubMedGoogle Scholar
  7. 7.
    Winzenrieth R, Michelet F, Hans D (2013) Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom 16:287–296CrossRefPubMedGoogle Scholar
  8. 8.
    Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA (2011) Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom 14:302–312CrossRefPubMedGoogle Scholar
  9. 9.
    Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R (2013) The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int 24:2455–2460CrossRefPubMedGoogle Scholar
  10. 10.
    Muschitz C, Kocijan R, Haschka J, Pahr D, Kaider A, Pietschmann P, Hans D, Muschitz GK, Fahrleitner-Pammer A, Resch H (2015) TBS reflects trabecular microarchitecture in premenopausal women and men with idiopathic osteoporosis and low-traumatic fractures. Bone 79:259–266CrossRefPubMedGoogle Scholar
  11. 11.
    Nassar K, Paternotte S, Kolta S, Fechtenbaum J, Roux C, Briot K (2014) Added value of trabecular bone score over bone mineral density for identification of vertebral fractures in patients with areal bone mineral density in the non-osteoporotic range. Osteoporos Int 25:243–249CrossRefPubMedGoogle Scholar
  12. 12.
    Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S (2013) Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int 24:991–998CrossRefPubMedGoogle Scholar
  13. 13.
    Winzenrieth R, Dufour R, Pothuaud L, Hans D (2010) A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int 86:104–109CrossRefPubMedGoogle Scholar
  14. 14.
    Rabier B, Héraud A, Grand-Lenoir C, Winzenrieth R, Hans D (2010) A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone 46:176–181CrossRefPubMedGoogle Scholar
  15. 15.
    Touvier J, Winzenrieth R, Johansson H, Roux JP, Chaintreuil J, Toumi H, Jennane R, Hans D, Lespessailles E (2015) Fracture discrimination by combined bone mineral density (BMD) and microarchitectural texture analysis. Calcif Tissue Int 96:274–283CrossRefPubMedGoogle Scholar
  16. 16.
    Leib E, Winzenrieth R, Lamy O, Hans D (2014) Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures. Calcif Tissue Int 95:201–208CrossRefPubMedGoogle Scholar
  17. 17.
    Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26:2762–2769CrossRefPubMedGoogle Scholar
  18. 18.
    Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R (2013) Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int 24:77–85CrossRefPubMedGoogle Scholar
  19. 19.
    Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–530CrossRefPubMedGoogle Scholar
  20. 20.
    McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJ, Fujita Y, Glüer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren O, Lorentzon M, Mellström D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31:940–948CrossRefPubMedGoogle Scholar
  21. 21.
    Ulivieri FM, Silva BC, Sardanelli F, Hans D, Bilezikian JP, Caudarella R (2014) Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine 47:435–448CrossRefPubMedGoogle Scholar
  22. 22.
    Harvey NC, Glüer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, Kendler D, Lamy O, Laslop A, Camargos BM, Reginster JY, Rizzoli R, Kanis JA (2015) Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78:216–224CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Leslie WD, Johansson H, Kanis JA, Lamy O, Oden A, McCloskey EV, Hans D (2014) Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos Int 25:2271–2277CrossRefPubMedGoogle Scholar
  24. 24.
    McCloskey EV, Odén A, Harvey NC, Leslie WD, Hans D, Johansson H, Kanis JA (2015) Adjusting fracture probability by trabecular bone score. Calcif Tissue Int 96:500–509CrossRefPubMedGoogle Scholar
  25. 25.
    Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD (2015) Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD Official Positions Part 2: trabecular bone score. J Clin Densitom 18:309–330Google Scholar
  26. 26.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176CrossRefPubMedGoogle Scholar
  27. 27.
    Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W, Rattan A, Scully S, Fletcher F, Juan T, Kelley M, Burgess TL, Boyle WJ, Polverino AJ (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157:435–448CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Udagawa N, Takahashi N, Yasuda H, Mizuno A, Itoh K, Ueno Y, Shinki T, Gillespie MT, Martin TJ, Higashio K, Suda T (2000) Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141:3478–3484CrossRefPubMedGoogle Scholar
  30. 30.
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 361:756–765CrossRefPubMedGoogle Scholar
  31. 31.
    Bolognese MA, Teglbjærg CS, Zanchetta JR, Lippuner K, McClung MR, Brandi ML, Høiseth A, Lakatos P, Moffett AH, Lorenc RS, Wang A, Libanati C (2013) Denosumab significantly increases DXA BMD at both trabecular and cortical sites: results from the FREEDOM study. J Clin Densitom 16:147–153CrossRefPubMedGoogle Scholar
  32. 32.
    Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, Maasalu K, Bolognese MA, Woodson G, Bone H, Ding B, Wagman RB, San Martin J, Ominsky MS, Dempster DW (2010) Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res 25:2256–2265CrossRefPubMedGoogle Scholar
  33. 33.
    Keaveny TM, McClung MR, Genant HK, Zanchetta JR, Kendler D, Brown JP, Goemaere S, Recknor C, Brandi ML, Eastell R, Kopperdahl DL, Engelke K, Fuerst T, Radcliffe HS, Libanati C (2014) Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res 29:158–165CrossRefPubMedGoogle Scholar
  34. 34.
    Hans D, Krieg M, Lamy O, Felsenberg D (2012) Beneficial effects of strontium ranelate compared to alendronate on trabecular bone score in post menopausal osteoporotic women. A 2-year study (abstract). Osteoporos Int 23(Suppl 2):S266–S267Google Scholar
  35. 35.
    Krieg MA, Aubry-Rozier B, Hans D, Leslie WD, Manitoba Bone Density Program (2013) Effects of anti-resorptive agents on trabecular bone score (TBS) in older women. Osteoporos Int 24:1073–1078CrossRefPubMedGoogle Scholar
  36. 36.
    Popp AW, Guler S, Lamy O, Senn C, Buffat H, Perrelet R, Hans D, Lippuner K (2013) Effects of zoledronate versus placebo on spine bone mineral density and microarchitecture assessed by the trabecular bone score in postmenopausal women with osteoporosis: a three-year study. J Bone Miner Res 28:449–454CrossRefPubMedGoogle Scholar
  37. 37.
    Di Gregorio S, Del Rio L, Rodriguez-Tolra J, Bonel E, García M, Winzenrieth R (2015) Comparison between different bone treatments on areal bone mineral density (aBMD) and bone microarchitectural texture as assessed by the trabecular bone score (TBS). Bone 75:138–143CrossRefPubMedGoogle Scholar
  38. 38.
    Senn C, Günther B, Popp AW, Perrelet R, Hans D, Lippuner K (2014) Comparative effects of teriparatide and ibandronate on spine bone mineral density (BMD) and microarchitecture (TBS) in postmenopausal women with osteoporosis: a 2-year open-label study. Osteoporos Int 25:1945–1951CrossRefPubMedGoogle Scholar
  39. 39.
    Austin M, Yang YC, Vittinghoff E, Adami S, Boonen S, Bauer DC, Bianchi G, Bolognese MA, Christiansen C, Eastell R, Grauer A, Hawkins F, Kendler DL, Oliveri B, McClung MR, Reid IR, Siris ES, Zanchetta J, Zerbini CA, Libanati C, Cummings SR, FREEDOM Trial (2012) Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures. J Bone Miner Res 27:687–693CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • M. R. McClung
    • 1
    • 2
    Email author
  • K. Lippuner
    • 3
  • M. L. Brandi
    • 4
  • J. R. Zanchetta
    • 5
  • H. G. Bone
    • 6
  • R. Chapurlat
    • 7
  • D. Hans
    • 8
  • A. Wang
    • 9
  • C. Zapalowski
    • 9
    • 10
  • C. Libanati
    • 9
    • 11
  1. 1.Oregon Osteoporosis CenterPortlandUSA
  2. 2.Institute for Health and Ageing, Australian Catholic UniversityMelbourneAustralia
  3. 3.University of BerneBerneSwitzerland
  4. 4.University of FlorenceFlorenceItaly
  5. 5.Instituto de Investigaciones MetabólicasBuenos AiresArgentina
  6. 6.Michigan Bone and Mineral ClinicDetroitUSA
  7. 7.INSERM UMR 1033, Université de Lyon, Hôpital Edouard HerriotLyonFrance
  8. 8.Lausanne University Hospital, Center of Bone DiseasesLausanneSwitzerland
  9. 9.Amgen Inc.Thousand OaksUSA
  10. 10.Radius HealthWalthamUSA
  11. 11.UCB PharmaBrusselsBelgium

Personalised recommendations