Osteoporosis International

, Volume 28, Issue 9, pp 2541–2556 | Cite as

Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability

  • P. Szulc
  • K. Naylor
  • N. R. Hoyle
  • R. Eastell
  • E. T. Leary
  • for the National Bone Health Alliance Bone Turnover Marker Project
Position Paper



The National Bone Health Alliance (NBHA) recommends standardized sample handling and patient preparation for C-terminal telopeptide of type I collagen (CTX-I) and N-terminal propeptide of type I procollagen (PINP) measurements to reduce pre-analytical variability. Controllable and uncontrollable patient-related factors are reviewed to facilitate interpretation and minimize pre-analytical variability.


The IOF and the International Federation of Clinical Chemistry (IFCC) Bone Marker Standards Working Group have identified PINP and CTX-I in blood to be the reference markers of bone turnover for the fracture risk prediction and monitoring of osteoporosis treatment. Although used in clinical research for many years, bone turnover markers (BTM) have not been widely adopted in clinical practice primarily due to their poor within-subject and between-lab reproducibility. The NBHA Bone Turnover Marker Project team aim to reduce pre-analytical variability of CTX-I and PINP measurements through standardized sample handling and patient preparation.


Recommendations for sample handling and patient preparations were made based on review of available publications and pragmatic considerations to reduce pre-analytical variability. Controllable and un-controllable patient-related factors were reviewed to facilitate interpretation and sample collection.


Samples for CTX-I must be collected consistently in the morning hours in the fasted state. EDTA plasma is preferred for CTX-I for its greater sample stability. Sample collection conditions for PINP are less critical as PINP has minimal circadian variability and is not affected by food intake. Sample stability limits should be observed. The uncontrollable aspects (age, sex, pregnancy, immobility, recent fracture, co-morbidities, anti-osteoporotic drugs, other medications) should be considered in BTM interpretation.


Adopting standardized sample handling and patient preparation procedures will significantly reduce controllable pre-analytical variability. The successful adoption of such recommendations necessitates the close collaboration of various stakeholders at the global stage, including the laboratories, the medical community, the reagent manufacturers and the regulatory agencies.


Anti-osteoporotic treatment Bone turnover markers C-terminal telopeptide of type I collagen N-terminal propeptide of type I procollagen Osteoporosis 



The NBHA would like to acknowledge the efforts of the IFCC and IOF in BTM standardization. We fully support further joint initiatives toward achieving this common goal and believe that, ideally, the relevant commercial parties should be involved as well.

Compliance with ethical standards

R.E. received grants and consultancy payments from both Roche Diagnostics and Immunodiagnostic Systems. NRH was previously an employee of Roche and received routine remunerations.

Conflict of interest



  1. 1.
    Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420CrossRefPubMedGoogle Scholar
  2. 2.
    Naylor K, Eastell R (2012) Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol 8:379–389CrossRefPubMedGoogle Scholar
  3. 3.
    Szulc P, Delmas PD (2008) Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int 19:1683–1704CrossRefPubMedGoogle Scholar
  4. 4.
    Miller GW, Myers GL, Lou Gantzer M, Kahn SE, Schönbrunner ER, Thienpont LM, Bunk DM, Christenson RH, Eckfeldt JH, Lo SF, Nübling CM, Sturgeon CM (2011) Roadmap for harmonization of clinical laboratory measurement procedures. Clin Chem 57:1108–1117. doi: 10.1373/clinchem.2011.164012 CrossRefGoogle Scholar
  5. 5.
    Szulc P, Bauer DC, Eastell R (2013) Biochemical markers of bone turnover in osteoporosis. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th Edition. Ed. in Chief: CJ Rosen, ASBMR and Willey-Blackwell, 297–306Google Scholar
  6. 6.
    Koivisto H, Hietala J, Niemelä O (2007) An inverse relationship between markers of fibrogenesis and collagen degradation in patients with or without alcoholic liver disease. Am J Gastroenterol 102:773–779CrossRefPubMedGoogle Scholar
  7. 7.
    Chavassieux P, Portero-Muzy N, Roux JP, Garnero P, Chapurlat R (2015) Are biochemical markers of bone turnover representative of bone histomorphometry in 370 postmenopausal women? J Clin Endocrinol Metab 100:4662–4668. doi: 10.1210/jc.2015-2957 CrossRefPubMedGoogle Scholar
  8. 8.
    Melkko J, Kauppila S, Niemi S, Risteli L, Haukipuro K, Jukkola A, Risteli J (1996) Immunoassay for intact amino-terminal propeptide of human type I procollagen. Clin Chem 42:947–954PubMedGoogle Scholar
  9. 9.
    Melkko J, Hellevick T, Ristelli L, Ristelli J, Smedsrod B (1994) Clearance of NH2 terminal propeptide of types I and III procollagen is a physiological function of the scavenger receptor in liver endothelial cells. J Exp Med 179:405–412CrossRefPubMedGoogle Scholar
  10. 10.
    Rosenquist C, Fledelius C, Christgau S, Pedersen B, Bonde M, Qvist P, Christiansen C (1998) Serum CrossLaps One Step ELISA. First application of monoclonal antibodies for measurement in serum of bone-related degradation products from C-terminal telopeptides of type I collagen. Clin Chem 44:2281–2289PubMedGoogle Scholar
  11. 11.
    Fledelius C, Johnsen AH, Cloos PA, Bonde M, Qvist P (1997) Characterization of urinary degradation products derived from type I collagen. Identification of a beta-isomerized Asp-Gly sequence within the C-terminal telopeptide (alpha1) region. J Biol Chem 272:9755–9763CrossRefPubMedGoogle Scholar
  12. 12.
    Lombardi G, Lanteri P, Colombini A, Banfi G (2012) Blood biochemical markers of bone turnover: pre-analytical and technical aspects of sample collection and handling. Clin Chem Lab Med 50:771–789. doi: 10.1515/cclm-2011-0614 CrossRefPubMedGoogle Scholar
  13. 13.
    Hannon R, Eastell R (2000) Pre-analytical variability of biochemical markers of bone turnover. Osteoporos Int 11(Suppl 6):S30–S44CrossRefPubMedGoogle Scholar
  14. 14.
    Christgau S, Rosenquist C, Alexandersen P, Bjarnason NH, Ravn P, Fledelius C, Herling C, Qvist P, Christiansen C (1998) Clinical evaluation of the Serum CrossLaps One Step ELISA, a new assay measuring the serum concentration of bone-derived degradation products of type I collagen C-telopeptides. Clin Chem 44:2290–2300PubMedGoogle Scholar
  15. 15.
    Garnero P, Borel O, Delmas PD (2001) Evaluation of a fully automated serum assay for C-terminal cross-linking telopeptide of type I collagen in osteoporosis. Clin Chem 47:694–702PubMedGoogle Scholar
  16. 16.
    Garnero P, Vergnaud P, Hoyle N (2008) Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem 54:188–196CrossRefPubMedGoogle Scholar
  17. 17.
    Morovat A, Catchpole A, Meurisse A, Carlisi A, Bekaert AC, Rousselle O, Paddon M, James T, Cavalier E (2013) IDS iSYS automated intact procollagen-1-N-terminus pro-peptide assay: method evaluation and reference intervals in adults and children. Clin Chem Lab Med 51:2009–2018. doi: 10.1515/cclm-2012-0531 CrossRefPubMedGoogle Scholar
  18. 18.
    Koivula MK, Richardson J, Leino A, Valleala H, Griffiths K, Barnes A et al (2010) Validation of an automated intact N-terminal propeptide of type I procollagen (PINP) assay. Clin Biochem 43:1453–1457CrossRefPubMedGoogle Scholar
  19. 19.
    Qvist P, Christgau S, Pedersen BJ, Schlemmer A, Christiansen C (2002) Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone 31:57–61CrossRefPubMedGoogle Scholar
  20. 20.
    Redmond J, Fulford AJ, Jarjou L, Zhou B, Prentice A, Schoenmakers I (2016) Diurnal rhythms of bone turnover markers in three ethnic groups. J Clin Endocrinol Metab 13:jc2016–jc1183Google Scholar
  21. 21.
    Clowes JA, Hannon RA, Yap TS, Hoyle NR, Blumsohn A, Eastell R (2002) Effect of feeding on bone turnover markers and its impact on biological variability of measurements. Bone 30:886–890CrossRefPubMedGoogle Scholar
  22. 22.
    Weiler R, Keen R, Wolman R (2012) Changes in bone turnover markers during the close season in elite football (soccer) players. J Sci Med Sport 15:255–258CrossRefPubMedGoogle Scholar
  23. 23.
    Stokes F, Ivanov P, Bailey L, Fraser W (2011) The effects of sampling procedures and storage conditions on short-term stability of blood-based biochemical markers of bone metabolism. Clin Chem 57:138–140CrossRefPubMedGoogle Scholar
  24. 24.
    β-CrossLaps/serum (β-CTX in serum) Immunoassay Cobas package insert (2014–09, V 14.0) Roche Diagnostics Corporation, IN, USAGoogle Scholar
  25. 25.
    Total PINP (2014) (total procollagen type I amino-terminal propeptide) immunoassay Cobas package insert (V11.0). Roche Diagnostics GmbH, MannheimGoogle Scholar
  26. 26.
    Qvist P, Munk M, Hoyle N, Christiansen C (2004) Serum and plasma fragments of C-telopeptides of type I collagen (CTX) are stable during storage at low temperatures for 3 years. Clin Chim Acta 350:167–173CrossRefPubMedGoogle Scholar
  27. 27.
    Lippi G, Brocco G, Salvagno GL, Montagnana M, Guidi GC, Schmidt-Gayk H (2007) Influence of the sample matrix on the stability of beta-CTX at room temperature for 24 and 48 hours. Clin Lab 53:455–459PubMedGoogle Scholar
  28. 28.
    Huber F, Traber L, Roth HJ, Heckel V, Schmidt-Gayk H (2003) Markers of bone resorption—measurement in serum, plasma or urine? Clin Lab 49:203–207PubMedGoogle Scholar
  29. 29.
    IDS-iSYS (2012) Intact PINP package insert (IS-4000R V01), Immunodiagnostic Systems, BoldenGoogle Scholar
  30. 30.
    IDS-iSYS CTX-I (2013) (CrossLaps) package insert (IS-3000PL V04), Immunodiagnostic Systems, BoldenGoogle Scholar
  31. 31.
    Serum CrossLaps (2010) ELISA package insert (AC-02PL-A), Immunodiagnostic Systems, BoldenGoogle Scholar
  32. 32.
    UniQ PINP RIA, Orion Diagnostica, Espoo, Finland. Cat No. 67034, package insert 35554-13Google Scholar
  33. 33.
    NCCLS (now CLSI) (2003) Application of biochemical markers of bone turnover in the assessment and monitoring of bone diseases; Proposed Guideline. NCCLS document C48-PGoogle Scholar
  34. 34.
    Wichers M, Schmidt E, Bidlingmaier F, Klingmüller D (1999) Diurnal rhythm of CrossLaps in human serum. Clin Chem 45:1858–1860PubMedGoogle Scholar
  35. 35.
    Christgau S, Bitsch-Jensen O, Hanover Bjarnason N, Gamwell Henriksen E, Qvist P, Alexandersen P, Bang HD (2000) Serum CrossLaps for monitoring the response in individuals undergoing antiresorptive therapy. Bone 26:505–511CrossRefPubMedGoogle Scholar
  36. 36.
    Ahmad AM, Hopkins MT, Fraser WD, Ooi CG, Durham BH, Vora JP (2003) Parathyroid hormone secretory pattern, circulating activity, and effect on bone turnover in adult growth hormone deficiency. Bone 32:170–179CrossRefPubMedGoogle Scholar
  37. 37.
    Luchavova M, Zikan V, Michalska D, Raska I Jr, Kubena AA, Stepan JJ (2011) The effect of timing of teriparatide treatment on the circadian rhythm of bone turnover in postmenopausal osteoporosis. Eur J Endocrinol 164:643–648CrossRefPubMedGoogle Scholar
  38. 38.
    Okabe R, Nakatsuka K, Inaba M, Miki T, Naka H, Masaki H et al (2001) Clinical evaluation of the Elecsys β-CrossLaps serum assay, a new assay for degradation products of type I collagen C-telopeptides. Clin Chem 47:1410–1414PubMedGoogle Scholar
  39. 39.
    Wolthers OD, Heuck C, Heickendorff L (2001) Diurnal variations in serum and urine markers of type I and type III collagen turnover in children. Clin Chem 47:1721–1722PubMedGoogle Scholar
  40. 40.
    Tahtela R (2004) Utility of type I collagen-derived markers as reflectors of bone turnover in different clinical situations. University of Helsinki, academic dissertationGoogle Scholar
  41. 41.
    Hoyle N, Wieczorek L (2000) A first technical & clinical review of a new automated serum PINP assay. Int Congress Endo Poster no. 331Google Scholar
  42. 42.
    Leary ET, McLaughlin MK, Swezey D, Aggoune T, Carlson TH, Foster AP (2000) Comparison of an automated C-telopeptide assay on the Elecsys 2010 with six serum and urine bone resorption markers in microtiter assay format. JBMR V15 S526, ASBMR poster 2000Google Scholar
  43. 43.
    Lomeo A, Bolner A (2000) Stability of several biochemical markers of bone metabolism. Clin Chem 46:1200–1202PubMedGoogle Scholar
  44. 44.
    Brandt J, Krogh TN, Jensen CH, Frederiksen JK, Teisner B (1999) Thermal instability of the trimeric structure of the N-terminal propeptide of human procollagen type I in relation to assay technology. Clin Chem 45:47–53PubMedGoogle Scholar
  45. 45.
    Gass ML, Kagan R, Kohles JD, Martens MG (2008) Bone turnover marker profile in relation to the menstrual cycle of premenopausal healthy women. Menopause 15:667–675CrossRefPubMedGoogle Scholar
  46. 46.
    Bhattoa HP, Nagy E, More C, Kappelmayer J, Balogh A, Kalina E, Antal-Szalmas P (2013) Prevalence and seasonal variation of hypovitaminosis D and its relationship to bone metabolism in healthy Hungarian men over 50 years of age: the HunMen Study. Osteoporos Int 24:179–186CrossRefPubMedGoogle Scholar
  47. 47.
    Pasco JA, Henry MJ, Kotowicz MA, Sanders KM, Seeman E, Pasco JR, Schneider HG, Nicholson GC (2004) Seasonal periodicity of serum vitamin D and parathyroid hormone, bone resorption, and fractures: the Geelong Osteoporosis Study. J Bone Miner Res 19:752–758CrossRefPubMedGoogle Scholar
  48. 48.
    Szulc P, Munoz F, Marchand F, Chapuy MC, Delmas PD (2003) Role of vitamin D and parathyroid hormone in the regulation of bone turnover and bone mass in men: the MINOS study. Calcif Tissue Int 73:520–530CrossRefPubMedGoogle Scholar
  49. 49.
    Woitge HW, Scheidt-Nave C, Kissling C, Leidig-Bruckner G, Meyer K, Grauer A, Scharla SH, Ziegler R, Seibel MJ (1998) Seasonal variation of biochemical indexes of bone turnover: results of a population-based study. J Clin Endocrinol Metab 83:68–75Google Scholar
  50. 50.
    Kitareewan W, Boonhong J, Janchai S, Aksaranugraha S (2011) Effects of the treadmill walking exercise on the biochemical bone markers. J Med Assoc Thail 5(94 Suppl):S10–S16Google Scholar
  51. 51.
    Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294Google Scholar
  52. 52.
    Bayer M (2014) Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0-18 years. Osteoporos Int 25:729–736Google Scholar
  53. 53.
    Fares JE, Choucair M, Nabulsi M, Salamoun M, Shahine CH, Fuleihan G-H (2003) Effect of gender, puberty, and vitamin D status on biochemical markers of bone remodeling. Bone 33:242–247Google Scholar
  54. 54.
    Gracia-Marco L, Vicente-Rodríguez G, Valtueña J, Rey-López JP, Díaz Martínez AE, Mesana MI, Widhalm K, Ruiz JR, González-Gross M, Castillo MJ, Moreno LA (2010) Bone mass and bone metabolism markers during adolescence: the HELENA Study. Horm Res Paediatr 74:339–350Google Scholar
  55. 55.
    Szulc P, Kaufman JM, Delmas PD (2007) Biochemical assessment of bone turnover and bone fragility in men. Osteoporos Int 18:1451–1461Google Scholar
  56. 56.
    Szulc P, Garnero P, Munoz F, Marchand F, Delmas PD (2001) Cross-sectional evaluation of bone metabolism in men. J Bone Miner Res 16:1642–1650Google Scholar
  57. 57.
    Naylor KE, Iqbal P, Fledelius C, Fraser RB, Eastell R (2000) The effect of pregnancy on bone density and bone turnover. J Bone Miner Res 15:129–137Google Scholar
  58. 58.
    Ritchie LD, Fung EB, Halloran BP, Turnlund JR, Van Loan MD, Cann CE, King JC (1998) A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am J Clin Nutr 67:693–701Google Scholar
  59. 59.
    Zeni SN, Ortela Soler CR, Lazzari A, López L, Suarez M, Di Gregorio S, Somoza JI, de Portela ML (2003) Interrelationship between bone turnover markers and dietary calcium intake in pregnant women: a longitudinal study. Bone 33:606–613Google Scholar
  60. 60.
    Hellmeyer L, Ziller V, Anderer G, Ossendorf A, Schmidt S, Hadji P (2006) Biochemical markers of bone turnover during pregnancy: a longitudinal study. Exp Clin Endocrinol Diabetes 114:506–510Google Scholar
  61. 61.
    Carneiro RM, Prebehalla L, Tedesco MB, Sereika SM, Hugo M, Hollis BW, Gundberg CM, Stewart AF, Horwitz MJ (2010) Lactation and bone turnover: a conundrum of marked bone loss in the setting of coupled bone turnover. J Clin Endocrinol Metab 95:1767–1776Google Scholar
  62. 62.
    Carneiro RM, Prebehalla L, Tedesco MB, Sereika SM, Gundberg CM, Stewart AF, Horwitz MJ (2013) Evaluation of markers of bone turnover during lactation in African-Americans: a comparison with Caucasian lactation. J Clin Endocrinol Metab 98:523–532Google Scholar
  63. 63.
    Glover SJ, Gall M, Schoenborn-Kellenberger O, Wagener M, Garnero P, Boonen S, Cauley JA, Black DM, Delmas PD, Eastell R (2009) Establishing a reference interval for bone turnover markers in 637 healthy, young, premenopausal women from the United Kingdom, France, Belgium, and the United States. J Bone Miner Res 24:389–397Google Scholar
  64. 64.
    Cohen FJ, Eckert S, Mitlak BH (1998) Geographic differences in bone turnover: data from a multinational study in healthy postmenopausal women. Calcif Tissue Int 63:277–282Google Scholar
  65. 65.
    Voorzanger-Rousselot N, Juillet F, Mareau E, Zimmermann J, Kalebic T, Garnero P (2006) Association of 12 serum biochemical markers of angiogenesis, tumour invasion and bone turnover with bone metastases from breast cancer: a cross-sectional and longitudinal evaluation. Br J Cancer 95:506–514Google Scholar
  66. 66.
    Ferreira A, Alho I, Casimiro S, Costa L (2015) Bone remodeling markers and bone metastases: from cancer research to clinical implications. Bonekey Rep 4:668. doi: 10.1038/bonekey.2015.35
  67. 67.
    Lumachi F, Santeufemia DA, Del Conte A, Mazza F, Tozzoli R, Chiara GB, Basso SM (2013) Carboxy-terminal telopeptide (CTX) and amino-terminal propeptide (PINP) of type I collagen as markers of bone metastases in patients with non-small cell lung cancer. Anticancer Res 33:2593–2596Google Scholar
  68. 68.
    Cloos PA, Lyubimova N, Solberg H, Qvist P, Christiansen C, Byrjalsen I, Christgau S (2004) An immunoassay for measuring fragments of newly synthesized collagen type I produced during metastatic invasion of bone. Clin Lab 50:279–289Google Scholar
  69. 69.
    Chapuy MC, Preziosi P, Maamer M, Arnaud S, Galan P, Hercberg S, Meunier PJ (1997) Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 7:439–443Google Scholar
  70. 70.
    Kuchuk NO, Pluijm SM, van Schoor NM, Looman CW, Smit JH, Lips P (2009) Relationships of serum 25-hydroxyvitamin D to bone mineral density and serum parathyroid hormone and markers of bone turnover in older persons. J Clin Endocrinol Metab 94:1244–1250Google Scholar
  71. 71.
    Seamans KM, Hill TR, Scully L, Meunier N, Andrillo-Sanchez M, Polito A, Hininger-Favier I, Ciarapica D, Simpson EE, Stewart-Knox BJ, O Connor JM, Coudray C, Cashman KD (2011) Vitamin d status and indices of bone turnover in older European adults. Int J Vitam Nutr Res 81:277–285Google Scholar
  72. 72.
    Landewé RB, Geusens P, van der Heijde DM, Boers M, van der Linden SJ, Garnero P (2006) Arthritis instantaneously causes collagen type I and type II degradation in patients with early rheumatoid arthritis: a longitudinal analysis. Ann Rheum Dis 65:40–44Google Scholar
  73. 73.
    Chapuy MC, Schott AM, Garnero P, Hans D, Delmas PD, Meunier PJ (1996) Healthy elderly French women living at home have secondary hyperparathyroidism and high bone turnover in winter. EPIDOS Study Group. J Clin Endocrinol Metab 81:1129–1133Google Scholar
  74. 74.
    Blumsohn A, Naylor KE, Timm W, Eagleton AC, Hannon RA, Eastell R (2003) Absence of marked seasonal change in bone turnover: a longitudinal and multicenter cross-sectional study. J Bone Miner Res 18:1274–1281Google Scholar
  75. 75.
    Midtby M, Magnus JH, Joakimsen RM (2001) The Tromsø Study: a population-based study on the variation in bone formation markers with age, gender, anthropometry and season in both men and women. Osteoporos Int 12:835–843Google Scholar
  76. 76.
    Theiler R, Stähelin HB, Kränzlin M, Tyndall A, Bischoff HA (1999) High bone turnover in the elderly. Arch Phys Med Rehabil 80:485–489Google Scholar
  77. 77.
    Chen JS, Cameron ID, Cumming RG, Lord SR, March LM, Sambrook PN, Simpson JM, Seibel MJ (2006) Effect of age-related chronic immobility on markers of bone turnover. J Bone Miner Res 21:324–331Google Scholar
  78. 78.
    Theiler R, Stähelin HB, Kränzlin M, Somorjai G, Singer-Lindpaintner L, Conzelmann M, Geusens P, Bischoff HA (2000) Influence of physical mobility and season on 25-hydroxyvitamin D-parathyroid hormone interaction and bone remodelling in the elderly. Eur J Endocrinol 143:673–679Google Scholar
  79. 79.
    Lu HK, Zhang Z, Ke YH, He JW, Fu WZ, Zhang CQ, Zhang ZL (2012) High prevalence of vitamin D insufficiency in China: relationship with the levels of parathyroid hormone and markers of bone turnover. PLoS One 7:e47264. doi: 10.1371/journal.pone. 0047264
  80. 80.
    Veitch SW, Findlay SC, Hamer AJ, Blumsohn A, Eastell R, Ingle BM (2006) Changes in bone mass and bone turnover following tibial shaft fracture. Osteoporos Int 17:364–372Google Scholar
  81. 81.
    Ivaska KK, Gerdhem P, Akesson K, Garnero P, Obrant KJ (2007) Effect of fracture on bone turnover markers: a longitudinal study comparing marker levels before and after injury in 113 elderly women. J Bone Miner Res 22:1155–1164Google Scholar
  82. 82.
    Moghaddam A, Müller U, Roth HJ, Wentzensen A, Grützner PA, Zimmermann G (2011) TRACP 5b and CTX as osteological markers of delayed fracture healing. Injury 42:758–764Google Scholar
  83. 83.
    Ureña P, De Vernejoul MC (1999) Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int 55:2141–2156Google Scholar
  84. 84.
    Tsuchida T, Ishimura E, Miki T, Matsumoto N, Naka H, Jono S, Inaba M, Nishizawa Y (2005) The clinical significance of serum osteocalcin and N-terminal propeptide of type I collagen in predialysis patients with chronic renal failure. Osteoporos Int 16:172–179Google Scholar
  85. 85.
    Cavalier E, Lukas P, Carlisi A, Gadisseur R, Delanaye P (2013) Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: the assay matters. Clin Chim Acta 425:117–118. doi: 10.1016/j.cca.2013.07.016
  86. 86.
    Haarhaus M, Fernström A, Magnusson M, Magnusson P (2009) Clinical significance of bone alkaline phosphatase isoforms, including the novel B1x isoform, in mild to moderate chronic kidney disease. Nephrol Dial Transplant 24:3382–3389. doi: 10.1093/ndt/gfp 300
  87. 87.
    Okuno S, Inaba M, Kitatani K, Ishimura E, Yamakawa T, Nishizawa Y (2005) Serum levels of C-terminal telopeptide of type I collagen: a useful new marker of cortical bone loss in hemodialysis patients. Osteoporos Int 16:501–509Google Scholar
  88. 88.
    Reichel H, Roth HJ, Schmidt-Gayk H (2004) Evaluation of serum beta-carboxy-terminal cross-linking telopeptide of type I collagen as marker of bone resorption in chronic hemodialysis patients. Nephron Clin Pract 98(4):c112–c118Google Scholar
  89. 89.
    Al Nofal AA, Altayar O, BenKhadra K, Qasim Agha OQ, Asi N, Nabhan M, Prokop LJ, Tebben P, Murad MH (2015) Bone turnover markers in Paget’s disease of the bone: a systematic review and meta-analysis. Osteoporos Int 26:1875–1891. doi: 10.1007/s00198-015-3095-0
  90. 90.
    Bonnin MR, Moragues C, Nolla JM, Lirón FJ, Roig-Escofet D, Navarro MA (1998) Evaluation of circulating type I procollagen propeptides in patients with Paget’s disease of bone. Clin Chem Lab Med 36:53–55Google Scholar
  91. 91.
    Alvarez L, Guañabens N, Peris P, Vidal S, Ros I, Monegal A, Bedini JL, Deulofeu R, Pons F, Muñoz-Gomez J, Ballesta AM (2001) Usefulness of biochemical markers of bone turnover in assessing response to the treatment of Paget’s disease. Bone 29:447–452Google Scholar
  92. 92.
    Garnero P, Fledelius C, Gineyts E, Serre CM, Vignot E, Delmas PD (1997) Decreased beta-isomerization of the C-terminal telopeptide of type I collagen alpha 1 chain in Paget’s disease of bone. J Bone Miner Res 12:1407–1415Google Scholar
  93. 93.
    Orford N, Cattigan C, Brennan SL, Kotowicz M, Pasco J, Cooper DJ (2014) The association between critical illness and changes in bone turnover in adults: a systematic review. Osteoporos Int 25:2335–2346. doi: 10.1007/s00198-014-2734-1
  94. 94.
    Van den Berghe G, Van Roosbroeck D, Vanhove P, Wouters PJ, De Pourcq L, Bouillon R (2003) Bone turnover in prolonged critical illness: effect of vitamin D. J Clin Endocrinol Metab 88:4623–4632Google Scholar
  95. 95.
    Ebeling PR, Peterson JM, Riggs BL (1992) Utility of type I procollagen propeptide assays for assessing abnormalities in metabolic bone diseases. J Bone Miner Res 7:1243–1250Google Scholar
  96. 96.
    Meier C, Beat M, Guglielmetti M, Christ-Crain M, Staub JJ, Kraenzlin M (2004) Restoration of euthyroidism accelerates bone turnover in patients with subclinical hypothyroidism: a randomized controlled trial. Osteoporos Int 15:209–216Google Scholar
  97. 97.
    Minisola S, Dionisi S, Pacitti MT, Paglia F, Carnevale V, Scillitani A, Mazzaferro S, De GS, Pepe J, Derasmo E, Romagnoli E (2002) Gender differences in serum markers of bone resorption in healthy subjects and patients with disorders affecting bone. Osteoporos Int 13:171–175Google Scholar
  98. 98.
    Wisłowska M, Jakubicz D, Stepień K, Cicha M (2009) Serum concentrations of formation (PINP) and resorption (Ctx) bone turnover markers in rheumatoid arthritis. Rheumatol Int 29:1403–1409Google Scholar
  99. 99.
    Garnero P, Jouvenne P, Buchs N, Delmas PD, Miossec P (1999) Uncoupling of bone metabolism in rheumatoid arthritis patients with or without joint destruction: assessment with serum type I collagen breakdown products. Bone 24:381–385Google Scholar
  100. 100.
    Lund T, Abildgaard N, Andersen TL, Delaisse JM, Plesner T (2010) Multiple myeloma: changes in serum C-terminal telopeptide of collagen type I and bone-specific alkaline phosphatase can be used in daily practice to detect imminent osteolysis. Eur J Haematol 84:412–420Google Scholar
  101. 101.
    Kowalska M, Druzd-Sitek A, Fuksiewicz M, Kotowicz B, Chechlinska M, Syczewska M, Walewski J, Kaminska J (2010) Procollagen I amino-terminal propeptide as a potential marker for multiple myeloma. Clin Biochem 43:604–608Google Scholar
  102. 102.
    Szappanos A, Toke J, Lippai D, Patócs A, Igaz P, Szücs N, Füto L, Gláz E, Rácz K, Tóth M (2010) Bone turnover in patients with endogenous Cushing’s syndrome before and after successful treatment. Osteoporos Int 21:637–645Google Scholar
  103. 103.
    Chiodini I, Carnevale V, Torlontano M, Fusilli S, Guglielmi G, PileriM, Modoni S, DiGiorgio A, LiuzziA, Minisola S, Cammisa M, Trischitta V, Scillitani A (1998) Alterations of bone turnover and bone mass at different skeletal sites due to pure glucocorticoid excess: study in eumenorrheic patients with Cushing’s syndrome. J Clin Endocrinol Metab 83:1863–1867Google Scholar
  104. 104.
    Karatzoglou I, Yavropoulou MP, Pikilidou M, Germanidis G, Akriviadis E, Papazisi A, Daniilidis M, Zebekakis P, Yovos JG (2014) Postprandial response of bone turnover markers in patients with Crohn’s disease. World J Gastroenterol 20:9534–9540. doi: 10.3748/wjg.v20.i28.9534
  105. 105.
    Gilman J, Shanahan F, Cashman KD (2006) Altered levels of biochemical indices of bone turnover and bone-related vitamins in patients with Crohn’s disease and ulcerative colitis. Aliment Pharmacol Ther 23:1007–1016Google Scholar
  106. 106.
    Veerappan SG, Healy M, Walsh BJ, O’Morain CA, Daly JS, Ryan BM (2015) Adalimumab therapy has a beneficial effect on bone metabolism in patients with Crohn’s disease. Dig Dis Sci 60:2119–2129. doi: 10.1007/s10620-015-3606-z
  107. 107.
    Guañabens N, Parés A, Alvarez L, Martínez de Osaba MJ, Monegal A, Peris P, Ballesta AM, Rodés J (1998) Collagen-related markers of bone turnover reflect the severity of liver fibrosis in patients with primary biliary cirrhosis. J Bone Miner Res 13:731–738Google Scholar
  108. 108.
    Fábrega E, Orive A, García-Suarez C, García-Unzueta M, Antonio Amado J, Pons-Romero F (2005) Osteoprotegerin and RANKL in alcoholic liver cirrhosis. Liver Int 25:305–310Google Scholar
  109. 109.
    Szalay F, Hegedus D, Lakatos PL, Tornai I, Bajnok E, Dunkel K, Lakatos P (2003) High serum osteoprotegerin and low RANKL in primary biliary cirrhosis. J Hepatol 38:395–400Google Scholar
  110. 110.
    Schytte S, Hansen M, Møller S, Junker P, Henriksen JH, Hillingsø J, Teisner B (1999) Hepatic and renal extraction of circulating type I procollagen aminopropeptide in patients with normal liver function and in patients with alcoholic cirrhosis. Scand J Clin Lab Invest 59:627–633Google Scholar
  111. 111.
    Haskelberg H, Carr A, Emery S (2011) Bone turnover markers in HIV disease. AIDS Rev 13:240–250Google Scholar
  112. 112.
    Sebba AI, Bonnick SL, Kagan R, Thompson DE, Skalky CS, Chen E, de Papp AE, Fosamax Actonel Comparison Trial investigators (2004) Response to therapy with once-weekly alendronate 70 mg compared to once-weekly risedronate 35 mg in the treatment of postmenopausal osteoporosis. Curr Med Res Opin 20:2031–2041Google Scholar
  113. 113.
    Binkley N, Silverman SL, Simonelli C, Santiago N, Kohles JD, Dasic G, Sunyecz JA (2009) Monthly ibandronate suppresses serum CTX-I within 3 days and maintains a monthly fluctuating pattern of suppression. Osteoporos Int 20:1595–1601Google Scholar
  114. 114.
    Eastell R, Christiansen C, Grauer A, Kutilek S, Libanati C, McClung MR, Reid IR, Resch H, Siris E, Uebelhart D, Wang A, Weryha G, Cummings SR (2011) Effects of denosumab on bone turnover markers in postmenopausal osteoporosis. J Bone Miner Res 26:530–537Google Scholar
  115. 115.
    Ochi Y, Yamada H, Mori H, Nakanishi Y, Nishikawa S, Kayasuga R, Kawada N, Kunishige A, Hashimoto Y, Tanaka M, Sugitani M, Kawabata K (2011) Effects of ONO-5334, a novel orally-active inhibitor of cathepsin K, on bone metabolism. Bone 49:1351–1356Google Scholar
  116. 116.
    Stoch SA, Zajic S, Stone JA, Miller DL, van Bortel L, Lasseter KC, Pramanik B, Cilissen C, Liu Q, Liu L, Scott BB, Panebianco D, Ding Y, Gottesdiener K, Wagner JA (2013) Odanacatib, a selective cathepsin K inhibitor to treat osteoporosis: safety, tolerability, pharmacokinetics and pharmacodynamics—results from single oral dose studies in healthy volunteers. Br J Clin Pharmacol 75:1240–1254Google Scholar
  117. 117.
    Okabe R, Inaba M, Nakatsuka K, Miki T, Naka H, Moriguchi A, Nishizawa Y (2004) Significance of serum CrossLaps as a predictor of changes in bone mineral density during estrogen replacement therapy; comparison with serum carboxyterminal telopeptide of type I collagen and urinary deoxypyridinoline. J Bone Miner Metab 22:127–131Google Scholar
  118. 118.
    Downs RW Jr, Moffett AM, Ghosh A, Cox DA, Dowsett SA, Harper K (2010) Effects of arzoxifene on bone, lipid markers, and safety parameters in postmenopausal women with low bone mass. Osteoporos Int 21:1215–1226Google Scholar
  119. 119.
    Delmas PD, McClung MR, Zanchetta JR, Racewicz A, Roux C, Benhamou CL, Man Z, Eusebio RA, Beary JF, Burgio DE, Matzkin E, Boonen S (2008) Efficacy and safety of risedronate 150 mg once a month in the treatment of postmenopausal osteoporosis. Bone 42:36–42Google Scholar
  120. 120.
    Delmas PD, Adami S, Strugala C, Stakkestad JA, Reginster JY, Felsenberg D, Christiansen C, Civitelli R, Drezner MK, Recker RR, Bolognese M, Hughes C, Masanauskaite D, Ward P, Sambrook P, Reid DM (2006) Intravenous ibandronate injections in postmenopausal women with osteoporosis: one-year results from the dosing intravenous administration study. Arthritis Rheum 54:1838–1846Google Scholar
  121. 121.
    Reginster JY, Adami S, Lakatos P, Greenwald M, Stepan JJ, Silverman SL, Christiansen C, Rowell L, Mairon N, Bonvoisin B, Drezner MK, Emkey R, Felsenberg D, Cooper C, Delmas PD, Miller PD (2006) Efficacy and tolerability of once-monthly oral ibandronate in postmenopausal osteoporosis: 2 year results from the MOBILE study. Ann Rheum Dis 65:654–661Google Scholar
  122. 122.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, Cosman F, Lakatos P, Leung PC, Man Z, Mautalen C, Mesenbrink P, Hu H, Caminis J, Tong K, Rosario-Jansen T, Krasnow J, Hue TF, Sellmeyer D, Eriksen EF, Cummings SR (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356:1809–1822Google Scholar
  123. 123.
    Eastell R, Nagase S, Small M, Boonen S, Spector T, Ohyama M, Kuwayama T, Deacon S (2014) Effect of ONO-5334 on bone mineral density and biochemical markers of bone turnover in postmenopausal osteoporosis: 2-year results from the OCEAN study. J Bone Miner Res 29:458–466Google Scholar
  124. 124.
    Bone HG, McClung MR, Roux C, Recker RR, Eisman JA, Verbruggen N, Hustad CM, DaSilva C, Santora AC, Ince BA (2010) Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res 25:937–947Google Scholar
  125. 125.
    Prestwood KM, Kenny AM, Unson C, Kulldorff M (2000) The effect of low dose micronized 17ss-estradiol on bone turnover, sex hormone levels, and side effects in older women: a randomized, double blind, placebo-controlled study. J Clin Endocrinol Metab 85:4462–4469Google Scholar
  126. 126.
    Reginster JY, Sarkar S, Zegels B, Henrotin Y, Bruyere O, Agnusdei D, Collette J (2004) Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk. Bone 34:344–351Google Scholar
  127. 127.
    Emkey R, Delmas PD, Bolognese M, Borges JL, Cosman F, Ragi-Eis S, Recknor C, Zerbini CA, Neate C, Sedarati F, Epstein S (2009) Efficacy and tolerability of once-monthly oral ibandronate (150 mg) and once-weekly oral alendronate (70 mg): additional results from the monthly oral therapy with ibandronate for osteoporosis intervention (MOTION) study. Clin Ther 31:751–761Google Scholar
  128. 128.
    Hadji P, Gamerdinger D, Spieler W, Kann PH, Loeffler H, Articus K, Möricke R, Ziller V (2012) Rapid Onset and Sustained Efficacy (ROSE) study: results of a randomised, multicentre trial comparing the effect of zoledronic acid or alendronate on bone metabolism in postmenopausal women with low bone mass. Osteoporos Int 23:625–633Google Scholar
  129. 129.
    Bauer DC, Garnero P, Bilezikian JP, Greenspan SL, Ensrud KE, Rosen CJ, Palermo L, Black DM (2006) Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 91:1370–1375Google Scholar
  130. 130.
    Krege JH, Lane NE, Harris JM, Miller PD (2014) PINP as a biological response marker during teriparatide treatment for osteoporosis. Osteoporos Int 25:2159–2171. doi: 10.1007/s00198-014-2646-0
  131. 131.
    Grimnes G, Joakimsen R, Figenschau Y, Torjesen PA, Almås B, Jorde R (2012) The effect of high-dose vitamin D on bone mineral density and bone turnover markers in postmenopausal women with low bone mass—a randomized controlled 1-year trial. Osteoporos Int 23:201–211. doi: 10.1007/s00198-011-1752-5
  132. 132.
    Kruger MC, Ha PC, Todd JM, Kuhn-Sherlock B, Schollum LM, Ma J, Qin G, Lau E (2012) High-calcium, vitamin D fortified milk is effective in improving bone turnover markers and vitamin D status in healthy postmenopausal Chinese women. Eur J Clin Nutr 66:856–861. doi: 10.1038/ejcn.2012.54
  133. 133.
    Aloia J, Bojadzievski T, Yusupov E, Shahzad G, Pollack S, Mikhail M, Yeh J (2010) The relative influence of calcium intake and vitamin D status on serum parathyroid hormone and bone turnover biomarkers in a double-blind, placebo-controlled parallel group, longitudinal factorial design. J Clin Endocrinol Metab 95:3216–3224. doi: 10.1210/jc.2009-1294
  134. 134.
    Zhu K, Bruce D, Austin N, Devine A, Ebeling PR, Prince RL (2008) Randomized controlled trial of the effects of calcium with or without vitamin D on bone structure and bone-related chemistry in elderly women with vitamin D insufficiency. J Bone Miner Res 23:1343–1348. doi: 10.1359/jbmr.080327
  135. 135.
    Albertazzi P, Steel SA, Howarth EM, Purdie DW (2004) Comparison of the effects of two different types of calcium supplementation on markers of bone metabolism in a postmenopausal osteopenic population with low calcium intake: a double-blind placebo-controlled trial. Climacteric 7:33–40Google Scholar
  136. 136.
    Kauh E, Mixson L, Malice MP, Mesens S, Ramael S, Burke J, Reynders T, Van Dyck K, Beals C, Rosenberg E, Ruddy M (2012) Prednisone affects inflammation, glucose tolerance, and bone turnover within hours of treatment in healthy individuals. Eur J Endocrinol 166:459–467Google Scholar
  137. 137.
    Ton FJ, Gunawardene SC, Lee H, Neer RM (2005) Effects of low-dose prednisone on bone metabolism. J Bone Miner Res 20:464–470Google Scholar
  138. 138.
    Dovio A, Perazzolo L, Osella G, Ventura M, Termine A, Milano E, Bertolotto A, Angeli A (2004) Immediate fall of bone formation and transient increase of bone resorption in the course of high-dose, short-term glucocorticoid therapy in young patients with multiple sclerosis. J Clin Endocrinol Metab 89:4923–4928Google Scholar
  139. 139.
    Gifre L, Ruiz-Gaspà S, Monegal A, Nomdedeu B, Filella X, Guañabens N, Peris P (2013) Effect of glucocorticoid treatment on Wnt signalling antagonists (sclerostin and Dkk-1) and their relationship with bone turnover. Bone 57:272–276Google Scholar
  140. 140.
    Anderson WJ, McFarlane LC, Lipworth BJ (2012) Prospective follow-up of novel markers of bone turnover in persistent asthmatics exposed to low and high doses of inhaled ciclesonide over 12 months. J Clin Endocrinol Metab 97:1929–1936Google Scholar
  141. 141.
    Coates LC, FitzGerald O, Helliwell PS, Paul C (2016) Psoriasis, psoriatic arthritis, and rheumatoid arthritis: is all inflammation the same? Semin Arthritis Rheum. doi: 10.1016/j.semarthrit.2016.05.012 online
  142. 142.
    Chopin F, Garnero P, le Henanff A, Debiais F, Daragon A, Roux C, Sany J, Wendling D, Zarnitsky C, Ravaud P, Thomas T (2008) Long-term effects of infliximab on bone and cartilage turnover markers in patients with rheumatoid arthritis. Ann Rheum Dis 67:353–357Google Scholar
  143. 143.
    Garnero P, Thompson E, Woodworth T, Smolen JS (2010) Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum 62:33–43. doi: 10.1002/art.25053
  144. 144.
    Karsdal MA, Schett G, Emery P, Harari O, Byrjalsen I, Kenwright A, Bay-Jensen AC, Platt A (2012) IL-6 receptor inhibition positively modulates bone balance in rheumatoid arthritis patients with an inadequate response to anti-tumor necrosis factor therapy: biochemical marker analysis of bone metabolism in the tocilizumab RADIATE study (NCT00106522). Semin Arthritis Rheum 42:131–139. doi: 10.1016/j.semarthrit.2012.01.004
  145. 145.
    de Papp AE, Bone HG, Caulfield MP, Kagan R, Buinewicz A, Chen E, Rosenberg E, Reitz RE (2007) A cross-sectional study of bone turnover markers in healthy premenopausal women. Bone 40:1222–1230Google Scholar
  146. 146.
    Ott SM, Scholes D, LaCroix AZ, Ichikawa LE, Yoshida CK, Barlow WE (2001) Effects of contraceptive use on bone biochemical markers in young women. J Clin Endocrinol Metab 86:179–185Google Scholar
  147. 147.
    Walsh JS, Eastell R, Peel NF (2010) Depot medroxyprogesterone acetate use after peak bone mass is associated with increased bone turnover but no decrease in bone mineral density. Fertil Steril 93:697–701. doi: 10.1016/j.fertnstert.2008.10.004
  148. 148.
    Gonnelli S, Cadirni A, Caffarelli C, Petrioli R, Montagnani A, FranciMB, Lucani B, Francini G, Nuti R (2007) Changes in bone turnover and in bone mass in women with breast cancer switched from tamoxifen to exemestane. Bone 40:205–210Google Scholar
  149. 149.
    Eastell R, Hannon RA, Cuzick J, Dowsett M, Clack G, Adams JE (2006) Effect of an aromatase inhibitor on BMD and bone turnover markers: 2-year results of the anastrozole, tamoxifen, alone or in combination (ATAC) trial (18233230). J Bone Miner Res 21:1215–1223Google Scholar
  150. 150.
    McCaig FM, Renshaw L, Williams L, Young O, Murray J, Macaskill EJ, McHugh M, Hannon R, Dixon JM (2010) A study of the effects of the aromatase inhibitors anastrozole and letrozole on bone metabolism in postmenopausal women with estrogen receptor-positive breast cancer. Breast Cancer Res Treat 119:643–651Google Scholar
  151. 151.
    Fitzpatrick LA (2004) Pathophysiology of bone loss in patients receiving anticonvulsant therapy. Epilepsy Behav 5:S3–S15Google Scholar
  152. 152.
    Lyngstad-Brechan MA, Taubøll E, Nakken KO, Gjerstad L, Godang K, Jemtland R, Bollerslev J (2008) Reduced bone mass and increased bone turnover in postmenopausal women with epilepsy using antiepileptic drug monotherapy. Scand J Clin Lab Invest 68:759–766Google Scholar
  153. 153.
    Verrotti A, Greco R, Morgese G, Chiarelli F (2000) Increased bone turnover in epileptic patients treated with carbamazepine. Ann Neurol 47:385–388Google Scholar
  154. 154.
    Heo K, Rhee Y, Lee HW, Lee SA, Shin DJ, Kim WJ, Song HK, Song K, Lee BI (2011) The effect of topiramate monotherapy on bone mineral density and markers of bone and mineral metabolism in premenopausal women with epilepsy. Epilepsia 52:1884–1889Google Scholar
  155. 155.
    Koo DL, Hwang KJ, Han SW, Kim JY, Joo EY, Shin WC, Lee HW, Seo DW, Hong SB (2014 Mar) Effect of oxcarbazepine on bone mineral density and biochemical markers of bone metabolism in patients with epilepsy. Epilepsy Res 108(3):442–447Google Scholar
  156. 156.
    Kulak CA, Borba VZ, Silvado CE, Ld P, Seibel MJ, Bilezikian JP, Boguszewski CL (2007) Bone density and bone turnover markers in patients with epilepsy on chronic antiepileptic drug therapy. Arq Bras Endocrinol Metabol 51:466–471Google Scholar
  157. 157.
    Yki-Jarvinen H (2004) Thiazolidinediones. N Engl J Med 351:1106–1118Google Scholar
  158. 158.
    Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, Reid IR (2007) The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women : a randomized, controlled trial. J Clin Endocrinol Metab 92:1305–1310Google Scholar
  159. 159.
    Ross AC, Hileman CO, Brown TT, Fedarko N, Storer N, Labbato D, McComsey GA (2012) Bone effects of rosiglitazone in HIV-infected patients with lipoatrophy. HIV Clin Trials 13:212–221Google Scholar
  160. 160.
    Zinman B, Haffner SM, Herman WH, Holman RR, Lachin JM, Kravitz BG, Paul G, Jones NP, Aftring RP, Viberti G, Kahn SE (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95:134–142Google Scholar
  161. 161.
    Gruntmanis U, Fordan S, Ghayee HK, Abdullah SM, See R, Ayers CR, McGuire DK (2010) The peroxisome proliferator-activated receptor-gamma agonist rosiglitazone increases bone resorption in women with type 2 diabetes: a randomized, controlled trial. Calcif Tissue Int 86:343–349Google Scholar
  162. 162.
    van Lierop AH, Hamdy NA, van der Meer RW, Jonker JT, Lamb HJ, Rijzewijk LJ, Diamant M, Romijn JA, Smit JW, Papapoulos SE (2012) Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical markers of bone turnover in men with type 2 diabetes mellitus. Eur J Endocrinol 166:711–716Google Scholar
  163. 163.
    Okazaki R,MiuraM, ToriumiM, TaguchiM, Hirota Y, Fukumoto S, Fujita T, Tanaka K, Takeuchi Y (1999) Short-term treatment with troglitazone decreases bone turnover in patients with type 2 diabetes mellitus. Endocr J 46:795–801Google Scholar
  164. 164.
    Reid IR, Ames RW, Orr-Walker BJ, Clearwater JM, Horne AM, Evans MC, Murray MA, McNeil AR, Gamble GD (2000) Hydrochlorothiazide reduces loss of cortical bone in normal postmenopausal women: a randomized controlled trial. Am J Med 109:362–370Google Scholar
  165. 165.
    Bolland MJ, Ames RW, Horne AM, Orr-Walker BJ, Gamble GD, Reid IR (2007) The effect of treatment with a thiazide diuretic for 4 years on bone density in normal postmenopausal women. Osteoporos Int 18:479–486Google Scholar
  166. 166.
    Olmos JM, Hernández JL, Martínez J, Castillo J, Valero C, Pérez Pajares I, Nan D, González-Macías J (2010) Bone turnover markers and bone mineral density in hypertensive postmenopausal women on treatment. Maturitas 65:396–402. doi: 10.1016/j.maturitas.2010.01.007
  167. 167.
    Knapen MHJ, Hellemons-Boode BSP, Langenberg-Ledeboer M, Knottnerus JA, Hamulyak K, Price PA, Vermeer C (2000) Effect of oral anticoagulant treatment on markers for calcium and bone metabolism. Haemostasis 30:290–297Google Scholar
  168. 168.
    Bauer D, Krege J, Lane N, Leary E, Libanati C, Miller P, Myers G, Silverman S, Vesper HW, Lee D, Payette M, Randall D (2012) National Bone Health Alliance Bone Turnover Marker Project: current practices and the need for US harmonization, standardization, and common reference ranges. Osteoporosis Int 23:2425–2433Google Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  1. 1.INSERM UMR 1033, Hôpital Edouard HerriotUniversity of LyonLyonFrance
  2. 2.Academic Unit of Bone Metabolism and Mellanby Centre for Bone ResearchUniversity of SheffieldSheffieldUK
  3. 3.MurnauGermany
  4. 4.ETL ConsultingSeattleUSA
  5. 5.Pacific BiomarkersSeattleUSA

Personalised recommendations