Advertisement

Osteoporosis International

, Volume 28, Issue 7, pp 2069–2079 | Cite as

Sarcopenia is associated with disability status—results from the KORA-Age study

  • A. PhillipsEmail author
  • R. Strobl
  • S. Vogt
  • K.-H. Ladwig
  • B. Thorand
  • E. Grill
Original Article

Abstract

Summary

We estimated the prevalence of sarcopenia and its impact on disability in older people. Sarcopenia was found to contribute to higher disability scores. However, our study was not able to show any influence of sarcopenia on the rate of functional decline. This directs attention to an accurate diagnosis of sarcopenia as the onset may be influenced, but its rate may not.

Introduction

The objectives of this study using data from a population-based cohort were to estimate the prevalence of sarcopenia in older people in Germany and to test the hypothesis that sarcopenia is associated with disability in older adults.

Methods

Cross-sectional (n = 927) and longitudinal analyses (n = 859) of participants aged ≥65 years at baseline from southern Germany enrolled in the Cooperative Health Research in the Region Augsburg (KORA)-Age study (2009–2012). Sarcopenia was defined based on the European Working Group on Sarcopenia in Older People (EWGSOP) algorithm which includes the presence of both low muscle mass and low muscle function (strength or performance). Disability status was measured by the Health Assessment Questionnaire–Disability Index (HAQ-DI). The presence of disability was defined as HAQ-DI >0. Directed acyclic graphs (DAGs) were constructed to identify potential confounders. The effect of sarcopenia on disability was analyzed using linear mixed effect models with disability values as a continuous outcome.

Results

The overall prevalence of sarcopenia was 5.7% (men 4.0%, women 7.5%) and increased with age. The 3-year incidence of disability was 32.7%. After adjustment for potential confounders, presence of sarcopenia was significantly associated with higher disability scores (0.142 [confidence interval 0.029–0.254]).

Conclusion

The prevalence of sarcopenia is consistent with estimates from other European studies using this algorithm. Our results suggest that sarcopenia can contribute to higher disability scores in older adults. However, our study was not able to show any influence of sarcopenia on the rate of functional decline using the EWGSOP diagnostic algorithm for sarcopenia. This directs attention to an accurate diagnosis of sarcopenia as the onset may be influenced, but its rate may not.

Keywords

Disability EWGSOP Muscle mass Older people Sarcopenia 

Notes

Acknowledgements

We thank the team at the KORA Study Centre in Augsburg who carried out the fieldwork for this study and the team at the Helmholtz Zentrum München for maintaining this complex data.

Compliance with ethical standards

Approval from the ethics committee of the Bavarian Medical Association was obtained (reference number 08064).

Funding

This study was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) (GR 3608/1-1). The KORA-Age project was financed by the German Federal Ministry of Education and Research (BMBF FKZ 01ET0713 and FKZ 01ET1003A, C) as part of the “Health in old age” program. SV was supported by the Kompetenznetz Adipositas (Competence Network Obesity), funded by the German Federal Ministry of Education and Research (FKZ 01GI1121B).The financial sponsors played no role in the design, execution, analysis, and interpretation of data or writing of the study.

Conflicts of interest

None.

Supplementary material

198_2017_4027_MOESM1_ESM.pdf (174 kb)
Figure 1 (PDF 173 kb)
198_2017_4027_MOESM2_ESM.pdf (421 kb)
Figure 2 (PDF 420 kb)
198_2017_4027_MOESM3_ESM.pdf (156 kb)
Table 1 (PDF 155 kb)
198_2017_4027_MOESM4_ESM.pdf (232 kb)
Table 2 (PDF 231 kb)

References

  1. 1.
    Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, Rolland Y, Rooks D, Sieber C, Souhami E, Verlaan S, Zamboni M (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc 12(4):249–256. doi: 10.1016/j.jamda.2011.01.003 CrossRefPubMedGoogle Scholar
  2. 2.
    Frisoli A Jr, Chaves PH, Ingham SJ, Fried LP (2011) Severe osteopenia and osteoporosis, sarcopenia, and frailty status in community-dwelling older women: results from the Women’s Health and Aging Study (WHAS) II. Bone 48(4):952–957. doi: 10.1016/j.bone.2010.12.025 CrossRefPubMedGoogle Scholar
  3. 3.
    Sowers MR, Crutchfield M, Richards K, Wilkin MK, Furniss A, Jannausch M, Zhang D, Gross M (2005) Sarcopenia is related to physical functioning and leg strength in middle-aged women. J Gerontol A Biol Sci Med Sci 60(4):486–490CrossRefPubMedGoogle Scholar
  4. 4.
    Viana JU, Silva SL, Torres JL, Dias JM, Pereira LS, Dias RC (2013) Influence of sarcopenia and functionality indicators on the frailty profile of community-dwelling elderly subjects: a cross-sectional study. Braz J Phys Therapy 17(4):373–381. doi: 10.1590/s1413-35552012005000102 CrossRefGoogle Scholar
  5. 5.
    He H, Liu Y, Tian Q, Papasian CJ, Hu T, Deng HW (2016) Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int 27(2):473–482. doi: 10.1007/s00198-015-3241-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Janssen I (2006) Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. J Am Geriatr Soc 54(1):56–62. doi: 10.1111/j.1532-5415.2005.00540.x CrossRefPubMedGoogle Scholar
  7. 7.
    Bischoff-Ferrari HA, Orav JE, Kanis JA, Rizzoli R, Schlogl M, Staehelin HB, Willett WC, Dawson-Hughes B (2015) Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int. doi: 10.1007/s00198-015-3194-y CrossRefPubMedGoogle Scholar
  8. 8.
    von Haehling S, Morley JE, Anker SD (2010) An overview of sarcopenia: facts and numbers on prevalence and clinical impact. J Cachex Sarcopenia Muscle 1(2):129–133. doi: 10.1007/s13539-010-0014-2 CrossRefGoogle Scholar
  9. 9.
    Morley JE (2008) Sarcopenia: diagnosis and treatment. J Nutr Health Aging 12(7):452–456. doi: 10.1007/BF02982705 CrossRefPubMedGoogle Scholar
  10. 10.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4):412–423. doi: 10.1093/ageing/afq034 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dawson-Hughes B, Bischoff-Ferrari H (2016) Considerations concerning the definition of sarcopenia. Osteoporos Int 27(11):3139–3144. doi: 10.1007/s00198-016-3674-8 CrossRefPubMedGoogle Scholar
  12. 12.
    Burton LA, Sumukadas D (2010) Optimal management of sarcopenia. Clin Interv Aging 5:217–228PubMedPubMedCentralGoogle Scholar
  13. 13.
    Holle R, Happich M, Lowel H, Wichmann HE (2005) KORA—a research platform for population based health research. Gesundheitswesen 67(Suppl 1):S19–S25. doi: 10.1055/s-2005-858235 CrossRefPubMedGoogle Scholar
  14. 14.
    Peters A, Doring A, Ladwig KH, Meisinger C, Linkohr B, Autenrieth C, Baumeister SE, Behr J, Bergner A, Bickel H, Bidlingmaier M, Dias A, Emeny RT, Fischer B, Grill E, Gorzelniak L, Hansch H, Heidbreder S, Heier M, Horsch A, Huber D, Huber RM, Jorres RA, Kaab S, Karrasch S, Kirchberger I, Klug G, Kranz B, Kuch B, Lacruz ME, Lang O, Mielck A, Nowak D, Perz S, Schneider A, Schulz H, Muller M, Seidl H, Strobl R, Thorand B, Wende R, Weidenhammer W, Zimmermann AK, Wichmann HE, Holle R (2011) Multimorbidity and successful aging: the population-based KORA-Age study. Zeitschrift fur Gerontologie und Geriatrie 44(Suppl 2):41–54. doi: 10.1007/s00391-011-0245-7 CrossRefPubMedGoogle Scholar
  15. 15.
    Fries JF, Spitz PW, Young DY (1982) The dimensions of health outcomes: the health assessment questionnaire, disability and pain scales. J Rheumatol 9(5):789–793PubMedGoogle Scholar
  16. 16.
    Bruce B, Fries JF (2003) The Stanford Health Assessment Questionnaire: a review of its history, issues, progress, and documentation. J Rheumatol 30(1):167–178PubMedGoogle Scholar
  17. 17.
    Bruce B, Fries JF (2005) The Health Assessment Questionnaire (HAQ). Clin Exp Rheumatol 23(5 Suppl 39):S14–S18PubMedGoogle Scholar
  18. 18.
    Krishnan E, Sokka T, Hakkinen A, Hubert H, Hannonen P (2004) Normative values for the Health Assessment Questionnaire Disability Index: benchmarking disability in the general population. Arthritis Rheum 50(3):953–960. doi: 10.1002/art.20048 CrossRefPubMedGoogle Scholar
  19. 19.
    Rohrig N, Strobl R, Muller M, Perz S, Kaab S, Martens E, Peters A, Linkohr B, Grill E (2014) Directed acyclic graphs helped to identify confounding in the association of disability and electrocardiographic findings: results from the KORA-Age study. J Clin Epidemiol 67(2):199–206. doi: 10.1016/j.jclinepi.2013.08.012 CrossRefPubMedGoogle Scholar
  20. 20.
    Janssen I, Heymsfield SB, Baumgartner RN, Ross R (2000) Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol (Bethesda, Md : 1985) 89(2):465–471CrossRefGoogle Scholar
  21. 21.
    Kyle UG, Genton L, Karsegard L, Slosman DO, Pichard C (2001) Single prediction equation for bioelectrical impedance analysis in adults aged 20–94 years. Nutrition (Burbank, Los Angeles County, Calif) 17(3):248–253CrossRefGoogle Scholar
  22. 22.
    Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763CrossRefPubMedGoogle Scholar
  23. 23.
    Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, Corsi AM, Rantanen T, Guralnik JM, Ferrucci L (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol (Bethesda, Md : 1985) 95(5):1851–1860. doi: 10.1152/japplphysiol.00246.2003 CrossRefGoogle Scholar
  24. 24.
    Guralnik JM, Ferrucci L, Pieper CF, Leveille SG, Markides KS, Ostir GV, Studenski S, Berkman LF, Wallace RB (2000) Lower extremity function and subsequent disability: consistency across studies, predictive models, and value of gait speed alone compared with the short physical performance battery. J Gerontol A Biol Sci Med Sci 55(4):M221–M231CrossRefPubMedGoogle Scholar
  25. 25.
    McDonough AL, Batavia M, Chen FC, Kwon S, Ziai J (2001) The validity and reliability of the GAITRite system’s measurements: a preliminary evaluation. Arch Phys Med Rehabil 82(3):419–425. doi: 10.1053/apmr.2001.19778 CrossRefPubMedGoogle Scholar
  26. 26.
    Webster KE, Wittwer JE, Feller JA (2005) Validity of the GAITRite walkway system for the measurement of averaged and individual step parameters of gait. Gait Posture 22(4):317–321. doi: 10.1016/j.gaitpost.2004.10.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Kressig RW, Beauchet O (2006) Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging Clin Exp Res 18(2):174–176CrossRefPubMedGoogle Scholar
  28. 28.
    Autenrieth CS, Karrasch S, Heier M, Gorzelniak L, Ladwig KH, Peters A, Doring A (2013) Decline in gait performance detected by an electronic walkway system in 907 older adults of the population-based KORA-Age study. Gerontology 59(2):165–173. doi: 10.1159/000342206 CrossRefPubMedGoogle Scholar
  29. 29.
    Policies ICfA (2003) International Drinking Guidelines.Google Scholar
  30. 30.
    Washburn RA, Zhu W, McAuley E, Frogley M, Figoni SF (2002) The physical activity scale for individuals with physical disabilities: development and evaluation. Arch Phys Med Rehabil 83(2):193–200CrossRefPubMedGoogle Scholar
  31. 31.
    Keller HH, Goy R, Kane SL (2005) Validity and reliability of SCREEN II (seniors in the community: risk evaluation for eating and nutrition, version II). Eur J Clin Nutr 59(10):1149–1157. doi: 10.1038/sj.ejcn.1602225 CrossRefPubMedGoogle Scholar
  32. 32.
    Kirchberger I, Meisinger C, Heier M, Zimmermann AK, Thorand B, Autenrieth CS, Peters A, Ladwig KH, Doring A (2012) Patterns of multimorbidity in the aged population. Results from the KORA-Age study. PLoS One 7(1):e30556. doi: 10.1371/journal.pone.0030556 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Spitzer RL, Kroenke K, Williams JB, Lowe B (2006) A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med 166(10):1092–1097. doi: 10.1001/archinte.166.10.1092 CrossRefPubMedGoogle Scholar
  34. 34.
    Lacruz M, Emeny R, Bickel H, Linkohr B, Ladwig K (2013) Feasibility, internal consistency and covariates of TICS-m (telephone interview for cognitive status-modified) in a population-based sample: findings from the KORA-Age study. Int J Geriatr Psychiatry 28(9):971–978. doi: 10.1002/gps.3916 CrossRefPubMedGoogle Scholar
  35. 35.
    Chaudhry S, Jin L, Meltzer D (2005) Use of a self-report-generated Charlson comorbidity index for predicting mortality. Med Care 43(6):607–615CrossRefPubMedGoogle Scholar
  36. 36.
    de Groot V, Beckerman H, Lankhorst GJ, Bouter LM (2003) How to measure comorbidity. A critical review of available methods. J Clin Epidemiol 56(3):221–229CrossRefPubMedGoogle Scholar
  37. 37.
    Hall SF (2006) A user’s guide to selecting a comorbidity index for clinical research. J Clin Epidemiol 59(8):849–855. doi: 10.1016/j.jclinepi.2005.11.013 CrossRefPubMedGoogle Scholar
  38. 38.
    Mühlberger NBC, Stark R, Holle R (2003) Datenbankgestützte Online-Erfassung von Arzneimitteln im Rahmen gesundheitswissenschaftlicher Studien – Erfahrungen mit der IDOM-Software. Inform Biom Epidemiol Med Biol 34:601–611Google Scholar
  39. 39.
    Gibbons RD, Hedeker D, DuToit S (2010) Advances in analysis of longitudinal data. Annu Rev Clin Psychol 6:79–107. doi: 10.1146/annurev.clinpsy.032408.153550 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Greenland S, Pearl J, Robins JM (1999) Causal diagrams for epidemiologic research. Epidemiology (Cambridge, Mass) 10(1):37–48CrossRefGoogle Scholar
  41. 41.
    Team RC (2014) R: a language and environment for statistical computing. R Foundation for Statisitcal Computing, ViennaGoogle Scholar
  42. 42.
    Textor J, Hardt J, Knuppel S (2011) DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology (Cambridge, Mass) 22(5):745. doi: 10.1097/EDE.0b013e318225c2be CrossRefGoogle Scholar
  43. 43.
    Bohannon RW (2006) Reference values for the timed up and go test: a descriptive meta-analysis. J Geriatr Phys Ther (2001) 29(2):64–68CrossRefGoogle Scholar
  44. 44.
    Janssen I, Baumgartner RN, Ross R, Rosenberg IH, Roubenoff R (2004) Skeletal muscle cutpoints associated with elevated physical disability risk in older men and women. Am J Epidemiol 159(4):413–421CrossRefPubMedGoogle Scholar
  45. 45.
    Alexandre Tda S, Duarte YA, Santos JL, Wong R, Lebrao ML (2014) Prevalence and associated factors of sarcopenia among elderly in Brazil: findings from the SABE study. J Nutr Health Aging 18(3):284–290. doi: 10.1007/s12603-013-0413-0 CrossRefPubMedGoogle Scholar
  46. 46.
    Kemmler W, von Stengel S, Engelke K, Sieber C, Freiberger E (2016) Prevalence of sarcopenic obesity in Germany using established definitions: baseline data of the FORMOsA study. Osteoporos Int 27(1):275–281. doi: 10.1007/s00198-015-3303-y CrossRefPubMedGoogle Scholar
  47. 47.
    Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y, Chen LK, Fielding RA, Martin FC, Michel JP, Sieber C, Stout JR, Studenski SA, Vellas B, Woo J, Zamboni M, Cederholm T (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the international sarcopenia initiative (EWGSOP and IWGS). Age Ageing 43(6):748–759. doi: 10.1093/ageing/afu115 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Volpato S, Bianchi L, Cherubini A, Landi F, Maggio M, Savino E, Bandinelli S, Ceda GP, Guralnik JM, Zuliani G, Ferrucci L (2014) Prevalence and clinical correlates of sarcopenia in community-dwelling older people: application of the EWGSOP definition and diagnostic algorithm. J Gerontol A Biol Sci Med Sci 69(4):438–446. doi: 10.1093/gerona/glt149 CrossRefPubMedGoogle Scholar
  49. 49.
    Patel HP, Syddall HE, Jameson K, Robinson S, Denison H, Roberts HC, Edwards M, Dennison E, Cooper C, Aihie Sayer A (2013) Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: findings from the Hertfordshire Cohort Study (HCS). Age Ageing 42(3):378–384. doi: 10.1093/ageing/afs197 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJ, Cummings SR, Evans WJ, Fearon K, Ferrucci L, Fielding RA, Guralnik JM, Harris TB, Inui A, Kalantar-Zadeh K, Kirwan BA, Mantovani G, Muscaritoli M, Newman AB, Rossi-Fanelli F, Rosano GM, Roubenoff R, Schambelan M, Sokol GH, Storer TW, Vellas B, von Haehling S, Yeh SS, Anker SD (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12(6):403–409. doi: 10.1016/j.jamda.2011.04.014 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Beaudart C, Reginster JY, Slomian J, Buckinx F, Locquet M, Bruyere O (2014) Prevalence of sarcopenia: the impact of different diagnostic cut-off limits. J Musculoskelet Neuronal Interact 14(4):425–431PubMedGoogle Scholar
  52. 52.
    Hirani V, Blyth F, Naganathan V, Le Couteur DG, Seibel MJ, Waite LM, Handelsman DJ, Cumming RG (2015) Sarcopenia is associated with incident disability, institutionalization, and mortality in community-dwelling older men: the concord health and ageing in men project. J Am Med Dir Assoc. doi: 10.1016/j.jamda.2015.02.006 CrossRefPubMedGoogle Scholar
  53. 53.
    Bianchi L, Ferrucci L, Cherubini A, Maggio M, Bandinelli S, Savino E, Brombo G, Zuliani G, Guralnik JM, Landi F, Volpato S (2016) The predictive value of the EWGSOP definition of sarcopenia: results from the InCHIANTI study. J Gerontol A Biol Sci Med Sci 71(2):259–264. doi: 10.1093/gerona/glv129 CrossRefPubMedGoogle Scholar
  54. 54.
    Pagotto V, Silveira EA (2014) Methods, diagnostic criteria, cutoff points, and prevalence of sarcopenia among older people. TheScientificWorldJOURNAL 2014:231312. doi: 10.1155/2014/231312 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Beaudart C, Reginster JY, Slomian J, Buckinx F, Dardenne N, Quabron A, Slangen C, Gillain S, Petermans J, Bruyere O (2015) Estimation of sarcopenia prevalence using various assessment tools. Exp Gerontol 61:31–37. doi: 10.1016/j.exger.2014.11.014 CrossRefPubMedGoogle Scholar
  56. 56.
    Frost M, Nielsen TL, Brixen K, Andersen M (2015) Peak muscle mass in young men and sarcopenia in the ageing male. Osteoporos Int 26(2):749–756. doi: 10.1007/s00198-014-2960-6 CrossRefPubMedGoogle Scholar
  57. 57.
    Rolland Y, Czerwinski S, Abellan Van Kan G, Morley JE, Cesari M, Onder G, Woo J, Baumgartner R, Pillard F, Boirie Y, Chumlea WM, Vellas B (2008) Sarcopenia: its assessment, etiology, pathogenesis, consequences and future perspectives. J Nutr Health Aging 12(7):433–450CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Judith D, Singer JBW (2003) Applied longitudinal analysis: modeling change and event occurrence. Oxford University Press, New YorkGoogle Scholar
  59. 59.
    Janssen I, Heymsfield SB, Ross R (2002) Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc 50(5):889–896CrossRefPubMedGoogle Scholar
  60. 60.
    Holle R, Hochadel M, Reitmeir P, Meisinger C, Wichmann HE (2006) Prolonged recruitment efforts in health surveys: effects on response, costs, and potential bias. Epidemiology (Cambridge, Mass) 17(6):639–643. doi: 10.1097/01.ede.0000239731.86975.7f CrossRefGoogle Scholar
  61. 61.
    Maier W, Fairburn J, Mielck A (2012) Regional deprivation and mortality in Bavaria. Development of a community-based index of multiple deprivation. Gesundheitswesen 74(7):416–425. doi: 10.1055/s-0031-1280846 CrossRefPubMedGoogle Scholar
  62. 62.
    Cruz-Jentoft AJ, Kiesswetter E, Drey M, Sieber CC (2017) Nutrition, frailty, and sarcopenia. Aging Clin Exp Res. doi: 10.1007/s40520-016-0709-0 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  1. 1.Institute for Medical Informatics, Biometry and EpidemiologyLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.German Center for Vertigo and Balance DisordersLudwig-Maximilians-Universität MünchenMunichGermany
  3. 3.Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)MunichGermany
  4. 4.Department for Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der IsarTechnical University of MunichMunichGermany

Personalised recommendations