Advertisement

Osteoporosis International

, Volume 28, Issue 7, pp 2115–2128 | Cite as

The comparability of HR-pQCT bone measurements is improved by scanning anatomically standardized regions

  • S. Bonaretti
  • S. Majumdar
  • T. F. Lang
  • S. Khosla
  • A. J. BurghardtEmail author
Original Article

Abstract

Summary

We investigated the sensitivity of distal bone density, structure, and strength measurements by high-resolution peripheral quantitative computed tomography (HR-pQCT) to variability in limb length. Our results demonstrate that HR-pQCT should be performed at a standard %-of-total-limb-length to avoid substantial measurement bias in population study comparisons and the evaluation of individual skeletal status in a clinical context.

Introduction

High-resolution peripheral quantitative computed tomography (HR-pQCT) measures of bone do not account for anatomic variability in bone length: a 1-cm volume is acquired at a fixed offset from an anatomic landmark. Our goal was to evaluate HR-pQCT measurement variability introduced by imaging fixed vs. proportional volumes and to propose a standard protocol for relative anatomic positioning.

Methods

Double-length (2-cm) scans were acquired in 30 adults. We compared measurements from 1-cm sub-volumes located at the default fixed offset, and the average %-of-length offset. The average position corresponded to 4.0% ± 1.1 mm for radius, and 7.2% ± 2.2 mm for tibia. We calculated the RMS difference in bone parameters and T-scores to determine the measurement variability related to differences in limb length. We used anthropometric ratios to estimate the mean limb length for published HR-pQCT reference data, and then calculated mean %-of-length offsets.

Results

Variability between fixed vs. relative scan positions was highest in the radius, and for cortical bone in general (RMS difference Ct.Th = 19.5%), while individuals had T-score differentials as high as +3.0 SD (radius Ct.BMD). We estimated that average scan position for published HR-pQCT reference data corresponded to 4.0% at the radius, and 7.3% at tibia.

Conclusion

Variability in limb length introduces significant bias to HR-pQCT measures, confounding cross-sectional analyses and limiting the clinical application for individual assessment of skeletal status. We propose to standardize scan positioning using 4.0 and 7.3% of total bone length for the distal radius and tibia, respectively.

Keywords

Bone HR-pQCT Multicenter study Osteoporosis Precision Standardization 

Notes

Acknowledgements

The authors would like to thank Isra Said, MD of UCSF, and Margaret Holets, Louise McCready, and James Peterson of Mayo Clinic for their assistance with clinical coordination and data collection. This study was supported by NIH/NIAMS R01 AR060700.

Compliance with ethical standards

All subjects provided written informed consent to participate in this study. The Committees on Human Research of UCSF and Mayo Clinic approved all study procedures.

Conflicts of interest

None.

References

  1. 1.
    Burghardt AJ, Link TM, Majumdar S (2011) High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 469:2179–2193. doi: 10.1007/s11999-010-1766-x CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90:6508–6515CrossRefPubMedGoogle Scholar
  3. 3.
    Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, Peterson JM, Melton LJ (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131CrossRefPubMedGoogle Scholar
  4. 4.
    Laib A, Häuselmann HJ, Rüegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Health Care 6:329–337PubMedGoogle Scholar
  5. 5.
    Boyd SK (2008) Site-specific variation of bone micro-architecture in the distal radius and tibia. J Clin Densitom 11:424–430. doi: 10.1016/j.jocd.2007.12.013 CrossRefPubMedGoogle Scholar
  6. 6.
    Mueller TL, van Lenthe GH, Stauber M, Gratzke C, Eckstein F, Müller R (2009) Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population. Bone 45:882–891. doi: 10.1016/j.bone.2009.06.031 CrossRefPubMedGoogle Scholar
  7. 7.
    Burt LA, Liang Z, Sajobi TT, Hanley DA, Boyd SK (2016) Sex- and site-specific normative data curves for HR-pQCT. J Bone Miner Res xx:1–7. doi: 10.1002/jbmr.2873
  8. 8.
    Feichtinger X, Kocijan R, Resch H, Muschitz C (2016) Bone microarchitecture deteriorations and a fragility fracture in a patient with beta and alpha heterozygous thalassemia: a case report. Wien. Klin, Wochenschr. doi: 10.1007/s00508-016-1032-7 CrossRefGoogle Scholar
  9. 9.
    Füchtbauer L, Brusgaard K, Ledaal P, Frost M, Frederiksen AL (2015) Case report: vitamin D-dependent rickets type 1 caused by a novel CYP27B1 mutation. Clin Case Reports 3:1012–1016. doi: 10.1002/ccr3.406 CrossRefGoogle Scholar
  10. 10.
    Zanchetta MB, Scioscia MF, Zanchetta JR (2016) Bone microarchitecture in Rett syndrome and treatment with teriparatide: a case report. Osteoporos Int:1–5. doi: 10.1007/s00198-016-3586-7
  11. 11.
    Arruda M, Coelho MCA, Moraes AB, de Paula Paranhos-Neto F, Madeira M, Farias MLF, Neto LV (2016) Bone mineral density and microarchitecture in patients with autosomal dominant osteopetrosis: a report of two cases. J Bone Miner Res 31:657–662. doi: 10.1002/jbmr.2715 CrossRefPubMedGoogle Scholar
  12. 12.
    Prevrhal S, Lu Y, Genant HK, Toschke JO, Shepherd JA (2005) Towards standardization of dual X-ray absorptiometry (DXA) at the forearm: a common region of interest (ROI) improves the comparability among DXA devices, Calcif. Tissue Int 76:348–354. doi: 10.1007/s00223-004-0050-z CrossRefGoogle Scholar
  13. 13.
    Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM (2008) Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD official positions. J Clin Densitom 11:123–162. doi: 10.1016/j.jocd.2007.12.010 CrossRefPubMedGoogle Scholar
  14. 14.
    Burrows M, Liu D, Moore S, McKay H (2010) Bone microstructure at the distal tibia provides a strength advantage to males in late puberty: an HR-pQCT study. J Bone Miner Res 25:1423–1432. doi: 10.1359/jbmr.091034 PubMedCrossRefGoogle Scholar
  15. 15.
    Wang Q, Wang XF, Iuliano-Burns S, Ghasem-Zadeh A, Zebaze R, Seeman E (2010) Rapid growth produces transient cortical weakness: a risk factor for metaphyseal fractures during puberty. J Bone Miner Res 25:1521–1526. doi: 10.1002/jbmr.46 CrossRefPubMedGoogle Scholar
  16. 16.
    Shanbhogue VV, Hansen S, Halekoh U, Brixen K (2015) Use of relative vs fixed offset distance to define region of interest at the distal radius and tibia in high-resolution peripheral quantitative computed tomography. J Clin Densitom 18:217–225. doi: 10.1016/j.jocd.2014.12.002 CrossRefPubMedGoogle Scholar
  17. 17.
    Boutroy S, Walker MD, Liu XS, McMahon DJ, Liu G, Guo XE, Bilezikian JP (2014) Lower cortical porosity and higher tissue mineral density in Chinese American versus white women. J Bone Miner Res 29:551–561. doi: 10.1002/jbmr.2057 CrossRefPubMedGoogle Scholar
  18. 18.
    Burghardt AJ, Kazakia GJ, Ramachandran S, Link TM, Majumdar S (2010) Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 25:983–993. doi: 10.1359/jbmr.091104 CrossRefPubMedGoogle Scholar
  19. 19.
    Chevalley T, Bonjour JP, Van Rietbergen B, Ferrari S, Rizzoli R (2013) Fracture history of healthy premenopausal women is associated with a reduction of cortical microstructural components at the distal radius. Bone 55:377–383. doi: 10.1016/j.bone.2013.04.025 CrossRefPubMedGoogle Scholar
  20. 20.
    Dalzell N, Kaptoge S, Morris N, Berthier A, Koller B, Braak L, Van Rietbergen B, Reeve J (2009) Bone micro-architecture and determinants of strength in the radius and tibia: age-related changes in a population-based study of normal adults measured with high-resolution pQCT. Osteoporos Int 20:1683–1694. doi: 10.1007/s00198-008-0833-6 CrossRefPubMedGoogle Scholar
  21. 21.
    Hansen S, Shanbhogue V, Folkestad L, Nielsen MMF, Brixen K (2014) Bone microarchitecture and estimated strength in 499 adult Danish women and men: a cross-sectional, population-based high-resolution peripheral quantitative computed tomographic study on peak bone structure. Calcif Tissue Int 94:269–281. doi: 10.1007/s00223-013-9808-5 CrossRefPubMedGoogle Scholar
  22. 22.
    Hung VWY, Zhu TY, Cheung W-H, Fong T-N, Yu FWP, Hung L-K, Leung K-S, Cheng JCY, Lam T-P, Qin L (2015) Age-related differences in volumetric bone mineral density, microarchitecture, and bone strength of distal radius and tibia in Chinese women: a high-resolution pQCT reference database study. Osteoporos Int:1691–1703. doi: 10.1007/s00198-015-3045-x
  23. 23.
    Macdonald HM, Nishiyama KK, Kang J, Hanley DA, Boyd SK (2011) Age-related patterns of trabecular and cortical bone loss differ between sexes and skeletal sites: a population-based HR-pQCT study. J Bone Miner Res 26:50–62. doi: 10.1002/jbmr.171 CrossRefPubMedGoogle Scholar
  24. 24.
    Nilsson M, Sundh D, Ohlsson C, Karlsson M, Mellström D, Lorentzon M (2014) Exercise during growth and young adulthood is independently associated with cortical bone size and strength in old Swedish men. J Bone Miner Res 29:1795–1804. doi: 10.1002/jbmr.2212 CrossRefPubMedGoogle Scholar
  25. 25.
    Szulc P, Boutroy S, Vilayphiou N, Chaitou A, Delmas PD, Chapurlat R (2011) Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res 26:1358–1367. doi: 10.1002/jbmr.319 CrossRefPubMedGoogle Scholar
  26. 26.
    Pialat JB, Burghardt AJ, Sode M, Link TM, Majumdar S (2012) Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture. Bone 50:111–118CrossRefPubMedGoogle Scholar
  27. 27.
    Laib A, Rüegsegger P (1999) Comparison of structure extraction methods for in vivo trabecular bone measurements. Comput Med Imaging Graph 23:69–74 http://www.ncbi.nlm.nih.gov/pubmed/10227372 CrossRefPubMedGoogle Scholar
  28. 28.
    Davis KA, Burghardt AJ, Link TM, Majumdar S (2007) The effects of geometric and threshold definitions on cortical bone metrics assessed by in vivo high-resolution peripheral quantitative computed tomography. Calcif Tissue Int 81:364–371. doi: 10.1007/s00223-007-9076-3 CrossRefPubMedGoogle Scholar
  29. 29.
    Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47:519–528CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK (2007) Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone 41:505–515. doi: 10.1016/j.bone.2007.07.007 CrossRefPubMedGoogle Scholar
  31. 31.
    Hildebrand T, Ru P (1997) A new method for the model-independent assessment of thickness in three-dimensional images 185:67–75.Google Scholar
  32. 32.
    Laib A, Hildebrand T, Häuselmann H, Rüegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21:541–546 http://www.sciencedirect.com/science/article/pii/S8756328297002056 (accessed January 15, 2015)CrossRefPubMedGoogle Scholar
  33. 33.
    Mueller TL, Christen D, Sandercott S, Boyd SK, van Rietbergen B, Eckstein F, Lochmüller E-M, Müller R, van Lenthe GH (2011) Computational finite element bone mechanics accurately predicts mechanical competence in the human radius of an elderly population. Bone 48:1232–1238. doi: 10.1016/j.bone.2011.02.022 CrossRefPubMedGoogle Scholar
  34. 34.
    Bonaretti S, Vilayphiou N, Chan CM, Yu A, Nishiyama K, Liu D, Boutroy S, Ghasem-Zadeh A, Boyd SK, Chapurlat R, McKay H, Shane E, Bouxsein ML, Black DM, Majumdar S, Orwoll ES, Lang TF, Khosla S, Burghardt AJ (n.d.) Operator variability in scan positioning is a major component of HR-pQCT precision error and is reduced by standardized training, Osteoporos Int. 2017 Jan;28(1):245–257.Google Scholar
  35. 35.
    Cox HWV (1990) Medical jurisprudence and toxicology, 6th Edition, The law book company.Google Scholar
  36. 36.
    Knight B (1998) Lawyer’s guide to forensic medicine, Routledge-Cavendish.Google Scholar
  37. 37.
    Sode M, Burghardt AJ, Kazakia GJ, Link TM, Majumdar S (2010) Regional variations of gender-specific and age-related differences in trabecular bone structure of the distal radius and tibia. Bone 46:1652–1660. doi: 10.1016/j.bone.2010.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Melton LJ, Riggs BL, van Lenthe GH, Achenbach SJ, Müller R, Bouxsein ML, Amin S, Atkinson EJ, Khosla S (2007) Contribution of in vivo structural measurements and load/strength ratios to the determination of forearm fracture risk in postmenopausal women. J Bone Miner Res 22:1442–1448. doi: 10.1359/jbmr.070514 CrossRefPubMedGoogle Scholar
  39. 39.
    Sornay-Rendu E, Boutroy S, Munoz F, Bouxsein ML (2009) Cortical and trabecular architecture are altered in postmenopausal women with fractures. Osteoporos Int 20:1291–1297. doi: 10.1007/s00198-009-1008-9 CrossRefPubMedGoogle Scholar
  40. 40.
    Jantz LM, Jantz RL (1999) Secular change in long bone length and proportion in the United States, 1800-1970. Am J Phys Anthropol 67:57–67CrossRefGoogle Scholar
  41. 41.
    Duyar İ, Pelin C (2010) Estimating body height from ulna length: need of a population-specific formula. Eurasian J. Anthropol. 1:11–17 http://www.eurasianjournals.com/index.php/eja/article/view/327 Google Scholar
  42. 42.
    Sargin OO, Duyar I, Demircin S (2012) Estimation of stature from the lengths of ulna and tibia: a cadaveric study based on group-specific regression equations. Eurasian J Anthropol 3:1–9Google Scholar
  43. 43.
    Gocha TP, Vercellotti G, Mccormick LE, Van Deest TL (2013) Formulae for estimating skeletal height in modern South-East Asians. J Forensic Sci 58:1279–1283. doi: 10.1111/1556-4029.12231 CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2017

Authors and Affiliations

  • S. Bonaretti
    • 1
    • 2
  • S. Majumdar
    • 1
  • T. F. Lang
    • 1
  • S. Khosla
    • 3
  • A. J. Burghardt
    • 1
    Email author
  1. 1.Musculoskeletal Quantitative Imaging Research Group, Department of Radiology & Biomedical ImagingUniversity of CaliforniaSan FranciscoUSA
  2. 2.Department of RadiologyStanford UniversityStanfordUSA
  3. 3.Division of Endocrinology, Metabolism and Nutrition, Department of Internal MedicineCollege of Medicine, Mayo ClinicRochesterUSA

Personalised recommendations