Low-trauma fractures without osteoporosis

Abstract

In clinical practice, areal bone mineral density (aBMD) is usually measured using dual-energy X-ray absorptiometry (DXA) to assess bone status in patients with or without osteoporotic fracture. As BMD has a Gaussian distribution, it is difficult to define a cutoff for osteoporosis diagnosis. Based on epidemiological considerations, WHO defined a DXA-based osteoporosis diagnosis with a T-score <−2.5. However, the majority of individuals who have low-trauma fractures do not have osteoporosis with DXA (i.e., T-score <−2.5), and some of them have no decreased BMD at all. Some medical conditions (spondyloarthropathies, chronic kidney disease and mineral bone disorder, diabetes, obesity) or drugs (glucocorticoids, aromatase inhibitors) are more prone to cause fractures with subnormal BMD. In the situation of fragility fractures with subnormal or normal BMD, clinicians face a difficulty as almost all the pharmacologic treatments have proved their efficacy in patients with low BMD. However, some data are available in post hoc analyses in patients with T score >−2. Overall, in patients with a previous fragility fracture (especially vertebra or hip), treatments appear to be effective. Thus, the authors recommend treating some patients with a major fragility fracture even if areal BMD T score is above −2.5.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group (1994) World Health Organ Tech Rep Ser 843:1–129

    Google Scholar 

  2. 2.

    Wainwright SA, Marshall LM, Ensrud KE et al (2005) Hip fracture in women without osteoporosis. J Clin Endocrinol Metab 90:2787–2793

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Siris ES, Miller PD, Barrett-Connor E et al (2001) Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA 286:2815–2822

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Pasco JA, Seeman E, Henry MJ et al (2006) The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int 17:1404–1409

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Schuit SC, van der Klift M, Weel AE et al (2004) Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone 34:195–202

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Abrahamsen B, Vestergaard P, Rud B et al (2006) Ten-year absolute risk of osteoporotic fractures according to BMD T score at menopause: the Danish Osteoporosis Prevention Study. J Bone Miner Res 21:796–800

    Article  PubMed  Google Scholar 

  7. 7.

    Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  8. 8.

    Melton LJ 3rd, Riggs BL, Keaveny TM et al (2010) Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res 25:1922–1930

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Christiansen BA, Bouxsein ML (2010) Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep 8:198–204

    Article  PubMed  Google Scholar 

  10. 10.

    Kopperdahl DL, Aspelund T, Hoffmann PF et al (2014) Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 29:570–580

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Wang X, Sanyal A, Cawthon PM et al (2012) Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res 27:808–816

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tremollieres FA, Pouilles JM, Drewniak N et al (2010) Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool. J Bone Miner Res 25:1002–1009

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hillier TA, Cauley JA, Rizzo JH et al (2011) WHO absolute fracture risk models (FRAX): do clinical risk factors improve fracture prediction in older women without osteoporosis? J Bone Miner Res 26:1774–1782

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Morin SN, Lix LM, Leslie WD (2014) The importance of previous fracture site on osteoporosis diagnosis and incident fractures in women. J Bone Miner Res 29:1675–1680

    Article  PubMed  Google Scholar 

  15. 15.

    Luengo M, Picado C, Del Rio L et al (1991) Vertebral fractures in steroid dependent asthma and involutional osteoporosis: a comparative study. Thorax 46:803–806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Van Staa TP, Laan RF, Barton IP et al (2003) Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis Rheum 48:3224–3229

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    van Staa TP, Leufkens HG, Cooper C (2002) The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int 13:777–787

    Article  PubMed  Google Scholar 

  18. 18.

    Peel NF, Moore DJ, Barrington NA et al (1995) Risk of vertebral fracture and relationship to bone mineral density in steroid treated rheumatoid arthritis. Ann Rheum Dis 54:801–806

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chappard D, Legrand E, Basle MF et al (1996) Altered trabecular architecture induced by corticosteroids: a bone histomorphometric study. J Bone Miner Res 11:676–685

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    O'Brien CA, Jia D, Plotkin LI et al (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–1841

    Article  PubMed  Google Scholar 

  21. 21.

    Boccardo F, Rubagotti A, Puntoni M et al (2005) Switching to anastrozole versus continued tamoxifen treatment of early breast cancer: preliminary results of the Italian Tamoxifen Anastrozole Trial. J Clin Oncol 23:5138–5147

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Coleman RE, Rathbone E, Brown JE (2013) Management of cancer treatment-induced bone loss. Nat Rev Rheumatol 9:365–374

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Eastell R, Adams JE, Coleman RE et al (2008) Effect of anastrozole on bone mineral density: 5-year results from the anastrozole, tamoxifen, alone or in combination trial 18233230. J Clin Oncol 26:1051–1057

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Gnant M, Pfeiler G, Dubsky PC et al (2015) Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 386:433–443

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Cheung AM, Tile L, Cardew S et al (2012) Bone density and structure in healthy postmenopausal women treated with exemestane for the primary prevention of breast cancer: a nested substudy of the MAP.3 randomised controlled trial. Lancet Oncol 13:275–284

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Roux C (2011) Osteoporosis in inflammatory joint diseases. Osteoporos Int 22:421–433

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Maksymowych WP, Chiowchanwisawakit P, Clare T et al (2009) Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum 60:93–102

    Article  PubMed  Google Scholar 

  28. 28.

    Geusens P, Vosse D, van der Linden S (2007) Osteoporosis and vertebral fractures in ankylosing spondylitis. Curr Opin Rheumatol 19:335–339

    Article  PubMed  Google Scholar 

  29. 29.

    Prieto-Alhambra D, Munoz-Ortego J, De Vries F et al (2015) Ankylosing spondylitis confers substantially increased risk of clinical spine fractures: a nationwide case-control study. Osteoporos Int 26:85–91

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Geusens P, De Winter L, Quaden D et al (2015) The prevalence of vertebral fractures in spondyloarthritis: relation to disease characteristics, bone mineral density, syndesmophytes and history of back pain and trauma. Arthritis Res Ther 17:294

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    West SL, Patel P, Jamal SA (2015) How to predict and treat increased fracture risk in chronic kidney disease. J Intern Med 278:19–28

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Ott SM (2009) Review article: bone density in patients with chronic kidney disease stages 4-5. Nephrology (Carlton) 14:395–403

    Article  Google Scholar 

  33. 33.

    Kidney Disease: Improving Global Outcomes CKDMBDWG. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009: S1–130.

  34. 34.

    Fletcher S, Jones RG, Rayner HC et al (1997) Assessment of renal osteodystrophy in dialysis patients: use of bone alkaline phosphatase, bone mineral density and parathyroid ultrasound in comparison with bone histology. Nephron 75:412–419

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Atsumi K, Kushida K, Yamazaki K et al (1999) Risk factors for vertebral fractures in renal osteodystrophy. Am J Kidney Dis 33:287–293

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Alem AM, Sherrard DJ, Gillen DL et al (2000) Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 58:396–399

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Jamal SA, Chase C, Goh YI et al (2002) Bone density and heel ultrasound testing do not identify patients with dialysis-dependent renal failure who have had fractures. Am J Kidney Dis 39:843–849

    Article  PubMed  Google Scholar 

  38. 38.

    Bucur RC, Panjwani DD, Turner L et al (2015) Low bone mineral density and fractures in stages 3-5 CKD: an updated systematic review and meta-analysis. Osteoporos Int 26:449–458

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Leslie WD, Rubin MR, Schwartz AV et al (2012) Type 2 diabetes and bone. J Bone Miner Res 27:2231–2237

    Article  PubMed  Google Scholar 

  41. 41.

    Yamamoto M, Yamaguchi T, Yamauchi M et al (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Miner Res 24:702–709

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Zhukouskaya VV, Ellen-Vainicher C, Gaudio A et al (2016) The utility of lumbar spine trabecular bone score and femoral neck bone mineral density for identifying asymptomatic vertebral fractures in well-compensated type 2 diabetic patients. Osteoporos Int 27:49–56

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Yamamoto M, Yamaguchi T, Yamauchi M et al (2007) Bone mineral density is not sensitive enough to assess the risk of vertebral fractures in type 2 diabetic women. Calcif Tissue Int 80:353–358

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Schwartz AV, Vittinghoff E, Bauer DC et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305:2184–2192

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Schwartz AV, Sellmeyer DE (2007) Diabetes, fracture, and bone fragility. Curr Osteoporos Rep 5:105–111

    Article  PubMed  Google Scholar 

  46. 46.

    Strotmeyer ES, Cauley JA, Schwartz AV et al (2005) Nontraumatic fracture risk with diabetes mellitus and impaired fasting glucose in older white and black adults: the health, aging, and body composition study. Arch Intern Med 165:1612–1617

    Article  PubMed  Google Scholar 

  47. 47.

    Giangregorio LM, Leslie WD, Lix LM et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27:301–308

    Article  PubMed  Google Scholar 

  48. 48.

    Carnevale V, Morano S, Fontana A et al (2014) Assessment of fracture risk by the FRAX algorithm in men and women with and without type 2 diabetes mellitus: a cross-sectional study. Diabetes Metab Res Rev 30:313–322

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Organization WH (2013) Obesity and overweight. Fact sheet 311. World Health Organization, Geneve

    Google Scholar 

  50. 50.

    Compston J (2013) Obesity and fractures. Joint Bone Spine 80:8–10

    Article  PubMed  Google Scholar 

  51. 51.

    Nielson CM, Marshall LM, Adams AL et al (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26:496–502

    Article  PubMed  Google Scholar 

  52. 52.

    Ishii S, Cauley JA, Greendale GA et al (2014) Pleiotropic effects of obesity on fracture risk: the Study of Women’s Health Across the Nation. J Bone Miner Res 29:2561–2570

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Johansson H, Kanis JA, Oden A et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29:223–233

    Article  PubMed  Google Scholar 

  54. 54.

    Rosen CJ, Bouxsein ML (2006) Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Zhao LJ, Jiang H, Papasian CJ et al (2008) Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Res 23:17–29

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Premaor MO, Pilbrow L, Tonkin C et al (2010) Obesity and fractures in postmenopausal women. J Bone Miner Res 25:292–297

    Article  PubMed  Google Scholar 

  57. 57.

    Compston JE, Watts NB, Chapurlat R et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124:1043–1050

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Premaor MO, Ensrud K, Lui L et al (2011) Risk factors for nonvertebral fracture in obese older women. J Clin Endocrinol Metab 96:2414–2421

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Cawsey S, Padwal R, Sharma AM et al (2015) Women with severe obesity and relatively low bone mineral density have increased fracture risk. Osteoporos Int 26:103–111

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Sornay-Rendu E, Boutroy S, Vilayphiou N et al (2013) In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res 28:1679–1687

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group Lancet 348:1535–1541

    CAS  PubMed  Google Scholar 

  62. 62.

    Kanis JA, Barton IP, Johnell O (2005) Risedronate decreases fracture risk in patients selected solely on the basis of prior vertebral fracture. Osteoporos Int 16:475–482

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357:1799–1809

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    McClung MR, Boonen S, Torring O et al (2012) Effect of denosumab treatment on the risk of fractures in subgroups of women with postmenopausal osteoporosis. J Bone Miner Res 27:211–218

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Marcus R, Wang O, Satterwhite J et al (2003) The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res 18:18–23

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Kanis JA, Johnell O, Oden A et al (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–995

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Kanis JA, McCloskey EV, Johansson H et al (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Sornay-Rendu E, Munoz F, Delmas PD et al (2010) The FRAX tool in French women: how well does it describe the real incidence of fracture in the OFELY cohort? J Bone Miner Res 25:2101–2107

    Article  PubMed  Google Scholar 

  69. 69.

    Camacho PM, Petak SM, Binkley N et al (2016) American Association of Clinical Endocrinologists and American College of Endocrinology Clinical Practice Guidelines for the Diagnosis and Treatment of Postmenopausal Osteoporosis—2016. Endocr Pract 22:1–42

    Article  PubMed  Google Scholar 

  70. 70.

    LeBlanc ES, Hillier TA, Pedula KL et al (2011) Hip fracture and increased short-term but not long-term mortality in healthy older women. Arch Intern Med 171:1831–1837

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Melton LJ 3rd, Achenbach SJ, Atkinson EJ et al (2013) Long-term mortality following fractures at different skeletal sites: a population-based cohort study. Osteoporos Int 24:1689–1696

    Article  PubMed  Google Scholar 

  72. 72.

    Bliuc D, Nguyen ND, Milch VE et al (2009) Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA 301:513–521

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Bliuc D, Nguyen TV, Eisman JA et al (2014) The impact of nonhip nonvertebral fractures in elderly women and men. J Clin Endocrinol Metab 99:415–423

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Lespessailles.

Ethics declarations

Conflicts of interest

E.L: occasional interventions: honoraria as an expert or speaker for Amgen, Expanscience, Lilly (France), MSD. Indirect interests: financial support to a research organization from Abbvie, Amgen, Lilly (France), MSD, UCB. B.C: occasional interventions: honoraria as an expert or speaker for Amgen, Expanscience, Lilly (France), MSD Medtronic, Roche diagnostics. Indirect interests: financial support to a research organization from Amgen and MSD. E.Legrand: honoraria as an expert or speaker for Amgen. P.G: Invitation conference and congress for AMGEN, Lilly, Novartis, Pfizer, Roche. C.R: occasional interventions: honoraria as an expert or speaker for Alexion, Amgen, Lilly (France), MSD, and UCB. Funding is from ULTRAGENYX.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lespessailles, E., Cortet, B., Legrand, E. et al. Low-trauma fractures without osteoporosis. Osteoporos Int 28, 1771–1778 (2017). https://doi.org/10.1007/s00198-017-3921-7

Download citation

Keywords

  • BMD
  • Diagnosis of osteoporosis
  • Low-trauma fracture
  • Normal BMD
  • Treatment of osteoporosis