Skip to main content

Advertisement

Log in

Jumping exercise preserves bone mineral density and mechanical properties in osteopenic ovariectomized rats even following established osteopenia

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The effects of jump training on bone structure before and after ovariectomy-induced osteopenia in rats were investigated. Jumping exercise induced favorable changes in bone mineral density, bone mechanical properties, and bone formation/resorption markers. This exercise is effective to prevent bone loss after ovariectomy even when osteopenia is already established.

Introduction

The present study investigated the effects of jump training on bone structure before and after ovariectomy-induced osteopenia in 80 10-week-old Wistar rats.

Methods

Forty rats (prevention program) were randomly allocated to one of four equal groups (n = 10): sham-operated sedentary (SHAM-SEDp), ovariectomized (OVX) sedentary (OVX-SEDp), sham-operated exercised (SHAM-EXp), and OVX exercised (OVX-EXp). SHAM-EXp and OVX-EXp animals began training 3 days after surgery. Another 40 rats (treatment program) were randomly allocated into another four groups (n = 10): sham-operated sedentary (SHAM-SEDt), OVX sedentary (OVX-SEDt), sham-operated exercised (SHAM-EXt), and OVX exercised (OVX-EXt). SHAM-EXt and OVX-EXt animals began training 60 days after surgery. The rats in the exercised groups jumped 20 times/day, 5 days/week, to a height of 40 cm for 12 weeks. At the end of the experimental period, serum osteocalcin, follicle-stimulating hormone (FSH) dosage, dual X-ray absorptiometry (DXA), histomorphometry, and biomechanical tests were analyzed.

Results

The OVX groups showed higher values of FSH and body weight (p < 0.05). DXA showed that jump training significantly increased bone mineral density of the femur and fifth lumbar vertebra (p < 0.05). The stiffness of the left femur and fifth lumbar vertebra in the exercised groups was greater than that of the sedentary groups (p < 0.05). Ovariectomy induced significant difference in bone volume (BV/TV, percent), trabecular separation (Tb.Sp, micrometer), and trabecular number (Tb.N, per millimeter) (p < 0.05) compared to sham operation. Jump training in the OVX group induced significant differences in BV/TV, Tb.Sp, and Tb.N and decreased osteoblast number per bone perimeter (p < 0.05) compared with OVX nontraining, in the prevention groups. Osteocalcin dosage showed higher values in the exercised groups (p < 0.05).

Conclusions

Jumping exercise induced favorable changes in bone mineral density, bone mechanical properties, and bone formation/resorption markers. Jump training is effective to prevent bone loss after ovariectomy even when osteopenia is already established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381

    Article  CAS  PubMed  Google Scholar 

  2. Sirola J, Diaz Curiel M, Honkanen R, Iwamoto J (2011) New issues in the management of osteoporosis. J Osteoporos 2011:582789. doi:10.4061/2011/582789

    PubMed  PubMed Central  Google Scholar 

  3. Compston J (2011) Pathophysiology of atypical femoral fractures and osteonecrosis of the jaw. Osteoporos Int 22(12):2951–2961. doi:10.1007/s00198-011-1804-x

    Article  CAS  PubMed  Google Scholar 

  4. Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JA (2009) Exercise and bone mass in adults. Sports Med 39(6):439–468

    Article  PubMed  Google Scholar 

  5. Abrahin O, Rodrigues RP, Marcal AC, Alves EA, Figueiredo RC, de Sousa EC (2016) Swimming and cycling do not cause positive effects on bone mineral density: a systematic review. Rev Bras Reumatol Engl Ed 56(4):345–351. doi:10.1016/j.rbre.2016.02.013

    Article  PubMed  Google Scholar 

  6. Nikander R, Sievanen H, Heinonen A, Kannus P (2005) Femoral neck structure in adult female athletes subjected to different loading modalities. J Bone Miner Res 20(3):520–528. doi:10.1359/JBMR.041119

    Article  PubMed  Google Scholar 

  7. Nikander R, Sievänen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P (2010) Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 8:47. doi:10.1186/1741-7015-8-47

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ju YI, Sone T, Ohnaru K, Choi HJ, Choi KA, Fukunaga M (2013) Jump exercise during hindlimb unloading protect against the deterioration of trabecular bone microarchitecture in growing young rats. Springerplus 2(1):35. doi:10.1186/2193-1801-2-35

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ju YI, Sone T, Ohnaru K, Choi HJ, Fukunaga M (2012) Differential effects of jump versus running exercise on trabecular architecture during remobilization after suspension-induced osteopenia in growing rats. J Appl Physiol (1985) 112(5):766–772. doi:10.1152/japplphysiol.01219.2011

    Article  Google Scholar 

  10. Kato T, Terashima T, Yamashita T, Hatanaka Y, Honda A, Umemura Y (2006) Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol (1985) 100(3):839–843. doi:10.1152/japplphysiol.00666.2005

    Article  Google Scholar 

  11. Lespessailles E, Gadois C, Lemineur G, Do-Huu JP, Benhamou L (2007) Bone texture analysis on direct digital radiographic images: precision study and relationship with bone mineral density at the os calcis. Calcif Tissue Int 80(2):97–102. doi:10.1007/s00223-006-0216-y

    Article  CAS  PubMed  Google Scholar 

  12. McKay HA, MacLean L, Petit M, MacKelvie-O’Brien K, Janssen P, Beck T, Khan KM (2005) “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med 39(8):521–526. doi:10.1136/bjsm.2004.014266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15(3):175–191

    Article  CAS  PubMed  Google Scholar 

  14. Wronski TJ, Dann LM, Scott KS, Cintron M (1989) Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int 45(6):360–366

    Article  CAS  PubMed  Google Scholar 

  15. Wronski TJ, Dann LM, Horner SL (1989) Time course of vertebral osteopenia in ovariectomized rats. Bone 10(4):295–301

    Article  CAS  PubMed  Google Scholar 

  16. Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comparative medicine 58(5):424–430

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li M, Shen Y, Wronski TJ (1997) Time course of femoral neck osteopenia in ovariectomized rats. Bone 20(1):55–61

    Article  CAS  PubMed  Google Scholar 

  18. Umemura Y, Ishiko T, Tsujimoto H, Miura H, Mokushi N, Suzuki H (1995) Effects of jump training on bone hypertrophy in young and old rats. Int J Sports Med 16(6):364–367. doi:10.1055/s-2007-973021

    Article  CAS  PubMed  Google Scholar 

  19. Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S (1997) Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res 12(9):1480–1485. doi:10.1359/jbmr.1997.12.9.1480

    Article  CAS  PubMed  Google Scholar 

  20. Ju YI, Sone T, Ohnaru K, Tanaka K, Yamaguchi H, Fukunaga M (2014) Effects of different types of jump impact on trabecular bone mass and microarchitecture in growing rats. PLoS One 9(9):e107953. doi:10.1371/journal.pone.0107953

    Article  PubMed  PubMed Central  Google Scholar 

  21. Falcai MJ, Zamarioli A, Okubo R, de Paula FJ, Volpon JB (2015) The osteogenic effects of swimming, jumping, and vibration on the protection of bone quality from disuse bone loss. Scand J Med Sci Sports 25(3):390–397. doi:10.1111/sms.12240

    Article  CAS  PubMed  Google Scholar 

  22. Hogan HA, Ruhmann SP, Sampson HW (2000) The mechanical properties of cancellous bone in the proximal tibia of ovariectomized rats. J Bone Miner Res 15(2):284–292. doi:10.1359/jbmr.2000.15.2.284

    Article  CAS  PubMed  Google Scholar 

  23. Monteiro LO, Macedo AP, Shimano RC, Shimano AC, Yanagihara GR, Ramos J, Paulini MR, Tocchini de Figueiredo FA, Gonzaga MG, Issa JP (2016) Effect of treatment with simvastatin on bone microarchitecture of the femoral head in an osteoporosis animal model. Microsc Res Tech 79(8):684–690. doi:10.1002/jemt.22682

    Article  CAS  PubMed  Google Scholar 

  24. Revell PA (1983) Histomorphometry of bone. J Clin Pathol 36(12):1323–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Flieger J, Karachalios T, Khaldi L, Raptou P, Lyritis G (1998) Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats. Calcif Tissue Int 63(6):510–514

    Article  CAS  PubMed  Google Scholar 

  26. Joo YI, Sone T, Fukunaga M, Lim SG, Onodera S (2003) Effects of endurance exercise on three-dimensional trabecular bone microarchitecture in young growing rats. Bone 33(4):485–493

    Article  PubMed  Google Scholar 

  27. Snow-Harter C, Marcus R (1991) Exercise, bone mineral density, and osteoporosis. Exerc Sport Sci Rev 19:351–388

    Article  CAS  PubMed  Google Scholar 

  28. Swissa-Sivan A, Azoury R, Statter M, Leichter I, Nyska A, Nyska M, Menczel J, Samueloff S (1990) The effect of swimming on bone modeling and composition in young adult rats. Calcif Tissue Int 47(3):173–177

    Article  CAS  PubMed  Google Scholar 

  29. Honda A, Sogo N, Nagasawa S, Kato T, Umemura Y (2008) Bones benefits gained by jump training are preserved after detraining in young and adult rats. J Appl Physiol (1985) 105(3):849–853. doi:10.1152/japplphysiol.00902.2007

    Article  Google Scholar 

  30. Umemura Y, Nagasawa S, Sogo N, Honda A (2008) Effects of jump training on bone are preserved after detraining, regardless of estrogen secretion state in rats. J Appl Physiol (1985) 104(4):1116–1120. doi:10.1152/japplphysiol.00937.2007

    Article  CAS  Google Scholar 

  31. Huang TH, Lin SC, Chang FL, Hsieh SS, Liu SH, Yang RS (2003) Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol (1985) 95(1):300–307. doi:10.1152/japplphysiol.01076.2002

    Article  CAS  Google Scholar 

  32. Iwamoto J, Shimamura C, Takeda T, Abe H, Ichimura S, Sato Y, Toyama Y (2004) Effects of treadmill exercise on bone mass, bone metabolism, and calciotropic hormones in young growing rats. J Bone Miner Metab 22(1):26–31. doi:10.1007/s00774-003-0443-5

    Article  CAS  PubMed  Google Scholar 

  33. Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, Rubin CT, Judex S (2006) Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39(5):1059–1066. doi:10.1016/j.bone.2006.05.012

    Article  PubMed  Google Scholar 

  34. Yang P, Jia B, Ding C, Wang Z, Qian A, Shang P (2009) Whole-body vibration effects on bone before and after hind-limb unloading in rats. Aviat Space Environ Med 80(2):88–93

    Article  PubMed  Google Scholar 

  35. Kuller LH, Gutai JP, Meilahn E, Matthews KA, Plantinga P (1990) Relationship of endogenous sex steroid hormones to lipids and apoproteins in postmenopausal women. Arteriosclerosis 10(6):1058–1066

    Article  CAS  PubMed  Google Scholar 

  36. Barengolts EI, Curry DJ, Bapna MS, Kukreja SC (1993) Effects of endurance exercise on bone mass and mechanical properties in intact and ovariectomized rats. J Bone Miner Res 8(8):937–942. doi:10.1002/jbmr.5650080806

    Article  CAS  PubMed  Google Scholar 

  37. Yarrow JF, Conover CF, Purandare AV, Bhakta AM, Zheng N, Conrad B, Altman MK, Franz SE, Wronski TJ, Borst SE (2008) Supraphysiological testosterone enanthate administration prevents bone loss and augments bone strength in gonadectomized male and female rats. Am J Phys Endocrinol Metab 295(5):E1213–E1222. doi:10.1152/ajpendo.90640.2008

    Article  CAS  Google Scholar 

  38. Fu SW, Zeng GF, Zong SH, Zhang ZY, Zou B, Fang Y, Lu L, Xiao DQ (2014) Systematic review and meta-analysis of the bone protective effect of phytoestrogens on osteoporosis in ovariectomized rats. Nutr Res 34(6):467–477. doi:10.1016/j.nutres.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  39. Wu ZX, Lei W, Hu YY, Wang HQ, Wan SY, Ma ZS, Sang HX, Fu SC, Han YS (2008) Effect of ovariectomy on BMD, micro-architecture and biomechanics of cortical and cancellous bones in a sheep model. Med Eng Phys 30(9):1112–1118. doi:10.1016/j.medengphy.2008.01.007

    Article  PubMed  Google Scholar 

  40. Chen L, Yang L, Yao M, Cui XJ, Xue CC, Wang YJ, Shu B (2016) Biomechanical characteristics of osteoporotic fracture healing in ovariectomized rats: a systematic review. PLoS One 11(4):e0153120. doi:10.1371/journal.pone.0153120

    Article  PubMed  PubMed Central  Google Scholar 

  41. Johnston BD, Ward WE (2015) The ovariectomized rat as a model for studying alveolar bone loss in postmenopausal women. Biomed Res Int 2015:635023. doi:10.1155/2015/635023

    Article  PubMed  PubMed Central  Google Scholar 

  42. Komori T (2015) Animal models for osteoporosis. Eur J Pharmacol 759:287–294. doi:10.1016/j.ejphar.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  43. Aswar UM, Mohan V, Bodhankar SL (2012) Antiosteoporotic activity of phytoestrogen-rich fraction separated from ethanol extract of aerial parts of Cissus quadrangularis in ovariectomized rats. Indian J Pharmacol 44(3):345–350. doi:10.4103/0253-7613.96310

    Article  PubMed  PubMed Central  Google Scholar 

  44. Honda A, Umemura Y, Nagasawa S (2001) Effect of high-impact and low-repetition training on bones in ovariectomized rats. J Bone Miner Res 16(9):1688–1693. doi:10.1359/jbmr.2001.16.9.1688

    Article  CAS  PubMed  Google Scholar 

  45. Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17 beta-estradiol on cortical bone histomorphometry in growing rats. J Bone Miner Res 2(2):115–122. doi:10.1002/jbmr.5650020206

    Article  CAS  PubMed  Google Scholar 

  46. Turner CH (2006) Bone strength: current concepts. Ann N Y Acad Sci 1068:429–446. doi:10.1196/annals.1346.039

    Article  PubMed  Google Scholar 

  47. Stengel SV, Kemmler W, Pintag R, Beeskow C, Weineck J, Lauber D, Kalender WA, Engelke K (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol (1985) 99(1):181–188. doi:10.1152/japplphysiol.01260.2004

    Article  CAS  Google Scholar 

  48. Fuchs RK, Bauer JJ, Snow CM (2001) Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res 16(1):148–156. doi:10.1359/jbmr.2001.16.1.148

    Article  CAS  PubMed  Google Scholar 

  49. Heinonen A, Kannus P, Sievänen H, Oja P, Pasanen M, Rinne M, Uusi-Rasi K, Vuori I (1996) Randomised controlled trial of effect of high-impact exercise on selected risk factors for osteoporotic fractures. Lancet 348(9038):1343–1347. doi:10.1016/s0140-6736(96)04214-6

    Article  CAS  PubMed  Google Scholar 

  50. Schett G, Kiechl S, Redlich K, Oberhollenzer F, Weger S, Egger G, Mayr A, Jocher J, Xu Q, Pietschmann P, Teitelbaum S, Smolen J, Willeit J (2004) Soluble RANKL and risk of nontraumatic fracture. JAMA 291(9):1108–1113. doi:10.1001/jama.291.9.1108

    Article  CAS  PubMed  Google Scholar 

  51. Findlay DM, Atkins GJ (2011) Relationship between serum RANKL and RANKL in bone. Osteoporos Int 22(10):2597–2602. doi:10.1007/s00198-011-1740-9

    Article  CAS  PubMed  Google Scholar 

  52. Uemura H, Yasui T, Miyatani Y, Yamada M, Hiyoshi M, Arisawa K, Irahara M (2008) Circulating profiles of osteoprotegerin and soluble receptor activator of nuclear factor kappaB ligand in post-menopausal women. J Endocrinol Investig 31(2):163–168

    Article  CAS  Google Scholar 

  53. Anderson PH, Atkins GJ, Turner AG, Kogawa M, Findlay DM, Morris HA (2011) Vitamin D metabolism within bone cells: effects on bone structure and strength. Mol Cell Endocrinol 347(1–2):42–47. doi:10.1016/j.mce.2011.05.024

    Article  CAS  PubMed  Google Scholar 

  54. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL (1999) Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140(9):4367–4370. doi:10.1210/endo.140.9.7131

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R . Okubo.

Ethics declarations

The protocols for animal experimentation were previously approved by the Institutional Animal Care and Use Committee of the university (protocol number CETEA 182/2008).

Conflicts of interest

None.

Funding

This work was supported and funded by the São Paulo Research Foundation (FAPESP), Brazil, process number 2008/10785-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okubo, R..., Sanada, L.S., Castania, V.A. et al. Jumping exercise preserves bone mineral density and mechanical properties in osteopenic ovariectomized rats even following established osteopenia. Osteoporos Int 28, 1461–1471 (2017). https://doi.org/10.1007/s00198-017-3905-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-3905-7

Keywords

Navigation