Skip to main content

Advertisement

Log in

Efficacy of statins for osteoporosis: a systematic review and meta-analysis

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Our meta-analysis assessed the efficacy of statins on the risk of fracture, bone mineral density (BMD), and the markers of bone metabolism by collecting data from 33 clinical trials. We found that statin treatment was associated with bone metabolism. And statins seemed to be more effective on male patients with osteoporosis. The efficacy of statins for the treatment of osteoporosis has been controversial in previous studies and meta-analyses. Our meta-analysis was conducted to examine in detail the efficacy of statins on osteoporosis. We searched PubMed, Embase, and the Cochrane Library databases for clinical trials from inception to May 2016. We included studies that described the effect of statins on the risk of fracture, BMD, or bone turnover markers. Moreover, we also conducted subgroup analyses according to the skeleton site, patient gender, and length of follow-up. A total of 33 studies which included 23 observational studies (16 cohort studies and 7 case-control studies) and 10 randomized controlled trials (RCTs) were evaluated. These 33 studies included 314,473 patients in statin group and 1,349,192 patients in control group. Statins decreased the risk of overall fractures (OR = 0.81, 95% CI 0.73–0.89) and hip fractures (OR = 0.75, 95% CI 0.60–0.92). Furthermore, the use of statins was associated with increased BMD at the total hip (standardized mean difference (SMD) = 0.18, 95% CI 0.00–0.36) and lumbar spine (SMD = 0.20, 95% CI 0.07–0.32) and improved the bone formation marker, osteocalcin (OC) (SMD = 0.21, 95% CI 0.00–0.42). However, there was no positive effect on vertebral fractures, upper extremity fractures, BMD at the femoral neck, bone-specific alkaline phosphatase (BALP), and serum C-terminal peptide of type I collagen (S-CTX). Also, compared with male subgroups, the effect on female subgroups was only slightly positive or of no statistical significance. Our meta-analysis indicates that statin treatment may be associated with a decreased risk of overall fractures and hip fractures, an increased BMD at the total hip, BMD at the lumbar spine, and OC. Moreover, our results also show that statin treatment may have a greater effect on male patients than on female patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Famili P, Cauley J, Suzuki JB, Weyant R (2005) Longitudinal study of periodontal disease and edentulism with rates of bone loss in older women. J Periodontol 76(1):11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ (1996) The prevalence of vertebral deformity in European men and women: the European vertebral osteoporosis study. J Bone Miner Res 11(7):1010–1018

    Article  PubMed  Google Scholar 

  3. Dahiya N, Khadka A, Sharma AK, Gupta AK, Singh N, Brashier DBS (2014) Denosumab: a bone antiresorptive drug. Medical Journal Armed Forces India 71(1):71–75

    Article  Google Scholar 

  4. Reid IR (2011) Bisphosphonates in the treatment of osteoporosis: a review of their contribution and controversies. Skelet Radiol 40(9):1191–1196

    Article  Google Scholar 

  5. Riggs BL, Hartmann LC (2003) Selective estrogen-receptor modulators mechanisms of action and application to clinical practice. New Engl J Med 348(7):618–629

    Article  CAS  PubMed  Google Scholar 

  6. Muñoztorres M, Alonso G, Raya MP (2004) Calcitonin therapy in osteoporosis. Treat Endocrinol 3(2):117–132

    Article  Google Scholar 

  7. Hajime M, Okada Y, Mori H, Tanaka Y (2014) A case of teriparatide-induced severe hypophosphatemia and hypercalcemia. J Bone Miner Metab 32(5):601–604

    Article  CAS  PubMed  Google Scholar 

  8. Oryan A, Kamali A, Moshiri A (2015) Potential mechanisms and applications of statins on osteogenesis: current modalities, conflicts and future directions. J Controll Release 215:12–24

    Article  CAS  Google Scholar 

  9. Liu J, Zhu LP, Yang XL, Huang HL, Ye DQ (2013) HMG-CoA reductase inhibitors (statins) and bone mineral density: a meta-analysis. Bone 54(1):151–156

    Article  CAS  PubMed  Google Scholar 

  10. Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY (2007) Effects of statins on bone mineral density: a meta-analysis of clinical studies. Bone 40(6):1581–1587

    Article  CAS  PubMed  Google Scholar 

  11. Hatzigeorgiou C, Jackson JL (2005) Hydroxymethylglutaryl-coenzyme a reductase inhibitors and osteoporosis: a meta-analysis. Osteoporosis Int 16(8):990–998

    Article  CAS  Google Scholar 

  12. Jin SL, Jiang JP, Bai PC, Zhang M, Tong X, Wang H et al (2015) Statin use and risk of fracture: a meta-analysis. Int J Clin Exp Med 8(5):8269–8275

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Berthold HK, Unverdorben S, Zittermann A, Degenhardt R, Baumeister B, Unverdorben M et al (2004) Age-dependent effects of atorvastatin on biochemical bone turnover markers: a randomized controlled trial in postmenopausal women. Osteoporosis Int 15(6):459–467

    Article  CAS  Google Scholar 

  14. Chen Z, Cai H, Jin X, Lu JH, Wang J, Fang NY (2014) Effects of atorvastatin on bone mineral density (BMD) and bone metabolism in elderly males with osteopenia and mild dyslipidemia: a 1-year randomized trial. Arch Gerontol Geriat 59(3):515–521

    Article  CAS  Google Scholar 

  15. Patil S, Holt G, Raby N, Mclellan AR, Smith K, O'Kane S et al (2009) Prospective, double blind, randomized, controlled trial of simvastatin in human fracture healing. J Orthop Res 27(3):281–285

    Article  CAS  PubMed  Google Scholar 

  16. Rosenson RS, Tangney CC, Langman CB, Parker TS, Levine DM, Gordon BR (2005) Short-term reduction in bone markers with high-dose simvastatin. Osteoporosis Int 16(10):1272–1276

    Article  Google Scholar 

  17. Rejnmark L, Buus HN, Vestergaard P, Heickendorff L, Andreasen F, Larsen LM et al (2004) Effects of simvastatin on bone turnover and BMD: a 1-year randomized controlled trial in postmenopausal osteopenic women. J Bone Miner Res 19(5):737–744

    Article  CAS  PubMed  Google Scholar 

  18. Hsia J, Morse M, Levin V (2002) Effect of simvastatin on bone markers in osteopenic women: a placebo-controlled, dose-ranging trial. BMC Musculoskel Dis 3(1):1–5

    Article  Google Scholar 

  19. Jiang J, Boyle LJ, Mikus CR, Oberlin DJ, Fletcher JA, Thyfault JP et al (2014) The effects of improved metabolic risk factors on bone turnover markers after 12 weeks of simvastatin treatment with or without exercise. Metabolism 63(11):1398–1408

    Article  CAS  PubMed  Google Scholar 

  20. Mundy GR (2007) Osteoporosis and inflammation. Nutr Rev 65(12):147–151

    Article  Google Scholar 

  21. Reid IR, Hague W, Emberson J, Baker J, Tonkin A, Hunt D et al (2001) Effect of pravastatin on frequency of fracture in the LIPID study: secondly analysis of a randomised controlled trial. Lancet 357(9255):509–512

    Article  CAS  PubMed  Google Scholar 

  22. Pena JM, Aspberg S, Macfadyen J, Glynn RJ, Solomon DH, Ridker PM (2015) Statin therapy and risk of fracture: results from the Jupiter randomized clinical trial. Jama Inter Med 175(2):171–177

    Article  Google Scholar 

  23. Chuengsamarn S, Rattanamongkoulgul S, Suwanwalaikorn S, Wattanasirichaigoon S, Kaufman L (2010) Effects of statins vs. non-statin lipid-lowering therapy on bone formation and bone mineral density biomarkers in patients with hyperlipidemia. Bone 46(4):1011–1015

    Article  CAS  PubMed  Google Scholar 

  24. Savić T, Janković D, Janković I, Bojanić V, Đinđić B, Miladinović-Tasić N (2010) Effects of simvastatin therapy on bone mineral density in hypercholesterolemic postmenopausal woman. Acta Facultatis Medicae Naissensis 27(1):13–18

    Google Scholar 

  25. Safaei H, Janghorbani M, Aminorroaya A, Amini M (2007) Lovastatin effects on bone mineral density in postmenopausal women with type 2 diabetes mellitus. Acta Diabetol 44(2):76–82

    Article  CAS  PubMed  Google Scholar 

  26. Lupattelli G, Scarponi AM, Vaudo G, Siepi D, Roscini AR, Gemelli F et al (2004) Simvastatin increase bone mineral density in hypercholesterolemic postmenopausal women. Metabolism 53(6):744–748

    Article  CAS  PubMed  Google Scholar 

  27. Chung YS, Lee MD, Lee SK, Kim HM, Fitzpatrick LA (2000) HMG-CoA reductase inhibitiors increase BMD in type 2 diabetes mellitus patients. J Clin Endocr Metab 85(3):1137–1142

    CAS  PubMed  Google Scholar 

  28. Funkhouser HL, Adera T, Adler RA (2002) Effect of HMG-CoA reductase inhibitors (statins) on bone mineral density. J Clin Densitom 5(2):151–158

    Article  PubMed  Google Scholar 

  29. Montagnani A, Gonneli S, Cepollaro C, Pacini S, Campagna MS, Franci MB et al (2003) Effect of simvasatatin treatment on bone mineral density and bone turnover in hypercholesterolemic postempausal women: a 1-year longitudinal study. Bone 32(4):427–433

    Article  CAS  PubMed  Google Scholar 

  30. LaCroix AZ, Cauley JA, Pettinger M, Hsia J, Bauer DC, McGowan J et al (2003) Statin use, clinical fracture, and bone density in postmenopausal women: results from the women’s health initiative observation study. Ann Intern Med 139(2):97–104

    Article  CAS  PubMed  Google Scholar 

  31. Masafumi K, Yusuke S, Toshinobu A, Teruhiko K, Shigeru K, Akira N et al (2003) Atorvastatin, 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, reduces bone resorption in the elderly. J Am Geriatr Soc 51(11):1677–1678

    Article  Google Scholar 

  32. Majima T, Shimatsu A, Komatsu Y, Satoh N, Fukao A, Ninomiya K et al (2007) Short-term effects of pitavastatin on biochemical markers of bone turnover in patients with hypercholesterolemia. Internal Med 46(24):1967–1974

    Article  Google Scholar 

  33. Smeeth L, Douglas I, Hall AJ, Hubbard R, Evans S (2008) Effect of statins on a wide range of health outcomes: a cohort study validated by comparison with randomized trials. Brit J Clin Pharmaco 67(1):99–109

    Article  Google Scholar 

  34. Scranton RE, Young M, Lawler E (2005) Statin use and fracture risk. Arch Int Med 165:2007–2012

    Article  Google Scholar 

  35. Helin-Salmivaara A, Korhonen MJ, Lehenkari P, Junnila SY, Neuvonen PJ, Ruokoniemi P et al (2012) Statins and hip fracture prevention—a population based cohort study in women. PLoS One 7(10):e48095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schoofs MW, Sturkenboom MC, Klift M, Hofman A, Pols HA, Stricker BH (2004) HMG-CoA reductase inhibitors and the risk of vertebral fracture. J Bone Miner Res 19(9):1525–1529

    Article  CAS  PubMed  Google Scholar 

  37. Ray WA, Daugherty JR, Griffin MR (2002) Lipid-lowering agents and the risk of hip fracture in a medicaid population. Injury Prev 8(4):276–279

    Article  CAS  Google Scholar 

  38. Ward IM, Mortensen EM, Battafarano DF, Frei CR, Mansi I (2014) Association of statins and risk of fractures in a military health system: a propensity score-matched analysis. Annals of Pharamacotherapy 48(11):1406–1411

    Article  CAS  Google Scholar 

  39. Staa TP, Wegman S, De VF, Leufkens B, Cooper C (2001) Use of statins and risk of fractures. Jama-J Am Med Assoc 285(14):1850–1856

    Article  Google Scholar 

  40. Rejnmark L, Olsen ML, Johnsen SP, Vestergaard P, Sorensen ST, Mosekilde L (2004) Hip fracture risk in statin users—a population-based Danish case-control study. Osteoporosis Int 15(6):452–458

    Article  Google Scholar 

  41. Meier CR, Schlienger RG, Kraenzlin ME, Schlegel B, Jick H (2000) HMG-CoA reductase inhibitors and the risk of fractures. Jama-J Am Med Assoc 283(24):3205–3210

    Article  CAS  Google Scholar 

  42. Chan KA, Andrade SE, Boles M, Buist DS, Chase GA, Donahue JG et al (2000) Inhibitors of hydroxymethylglutaryl-coenzyme a reductase and risk of fracture among older women. Lancet 355(9222):2185–2188

    Article  CAS  PubMed  Google Scholar 

  43. Bakhireva LN, Shainline MR, Carter S, Robinson S, Beaton SJ, Nawarskas JJ et al (2010) Synergistic effect of stains and postmenopausal hormone therapy in the prevention of skeletal fractures in elderly women. Pharmacotherapy 30(9):779–887

    Article  Google Scholar 

  44. Wang PS, Solomon DH, Mogun H, Avorn J (2000) HMG-CoA reductase inhibitors and the risk of hip fractures in elederly patients. Jama-J Am Med Assoc 283(24):3211–3216

    Article  CAS  Google Scholar 

  45. Rejnmark L, Vestergaard P, Mosekilde L (2006) Statin but not non-statin lipid-lowering drugs decrease fracture risk: a nation-wide case-control study. Calcified Tissue Int 79(1):27–36

    Article  CAS  Google Scholar 

  46. Ruan F, Zheng Q, Wang J (2012) Mechanisms of bone anabolism regulated by statins. Bioscience Rep 32(6):511–519

    Article  CAS  Google Scholar 

  47. Jensen ED, Rajaram G, Westendorf JJ (2010) Regulation of gene express in osteoblasts. Biofactors 36(1):25–32

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Martin JW, Zielenska M, Stein GS, Wijnen AJ, Squire JA (2011) The role of RUNX2 in osteosarcoma oncogenesis. Sarcoma 2011(13):1–13

    Article  Google Scholar 

  49. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343(6257):425–430

    Article  CAS  PubMed  Google Scholar 

  50. Weivoda MM, Hohl RJ (2011) Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation. Endocrinology 152(8):3113–3122

    Article  CAS  PubMed  Google Scholar 

  51. Centrella M, Mccarthy TL, Canalis E (1987) Transforming growth-factor-β is a bifunctional regulator of replication and collagen-synthesis in osteoblast-enriched cell-cultures from fetal-rat bone. J Biol Chem 262(6):2869–2874

    CAS  PubMed  Google Scholar 

  52. Heldin CH, Miyazono K, Dijke PT (1997) TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471

    Article  CAS  PubMed  Google Scholar 

  53. Tsubaki M, Satou T, Itoh T, Imano M, Yanae M, Kato C et al (2012) Bisphosphonate-and statin-induced enhancement of OPG expression and inhibition of CD9, M-CSF, and RANKL expressions via inhibition of the Ras/MEK/ERK pathway and activation of p38MAPK in mouse bone marrow stromal cell line ST2. Mol Cell Endocrinol 361(2):219–231

    Article  CAS  PubMed  Google Scholar 

  54. Wishart J, Horowitz M, Need A, Nordin BE (1990) Relationship between forearm and vertebral mineral density in postmenopausal women with primary hyperparathyroidism. Arch Intern Med 150(6):1329–1331

    Article  CAS  PubMed  Google Scholar 

  55. Seeman E (2002) Pathogenesis of bone fragility in women and men. Lancet 359(9320):1841–1850

    Article  PubMed  Google Scholar 

  56. Hamelin BA, Turgeon J (1998) Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci 19(1):26–37

    Article  CAS  PubMed  Google Scholar 

  57. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G et al (1999) Stimulation of bone formation in vitro and in rodents by statins. Science 286(5446):1946–1949

    Article  CAS  PubMed  Google Scholar 

  58. Bauer DC, Mundy GR, Jamal SA, Black DM, Cauley JA, Ensrud KE et al (2004) Use of statins and fracture: results of 4 prospective studies and cumulative meta-analysis of observational studies and controlled trials. Arch Intern Med 164(2):146–152

    Article  CAS  PubMed  Google Scholar 

  59. Pasco JA, Kotowicz MA, Henry MJ, Sanders KM, Nicholson GC (2002) Statin use, bone mineral density, and fracture risk: Geelong osteoporosis study. Arch Int Med 162(5):537–540

    Article  CAS  Google Scholar 

  60. Johansson H, Kanis JA, Odén A, McCloskey E, Chapurlat RD, Christiansen C et al (2014) A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res 29(1):223–233

    Article  PubMed  Google Scholar 

  61. Ivers RQ, Cumming RG, Mitchell P, Peduto AJ (2001) Diabetes and risk of fracture: the blue mountains eye study. Diabetes Care 24(7):1198–1203

    Article  CAS  PubMed  Google Scholar 

  62. Grasser WA, Baumann AP, Petras SF, Harwood HJ Jr, Devalaraja R, Renkiewicz R et al (2003) Regulation of osteoclast differentiation by statins. J Musculoskel Neuron 3(1):53–62

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the “Faculty of Medical Devices-Jingxin” Cooperation Fund of Shenyang Pharmaceutical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zou.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

.

Supplementary Table 1

(DOCX 13 kb)

.

Supplementary Table 2

(DOCX 15 kb)

.

Supplementary Table 3

(DOCX 13 kb)

.

Supplementary Table 4

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, T., Hao, J., Sun, S. et al. Efficacy of statins for osteoporosis: a systematic review and meta-analysis. Osteoporos Int 28, 47–57 (2017). https://doi.org/10.1007/s00198-016-3844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3844-8

Keywords

Navigation