Skip to main content

Advertisement

Log in

Vertebral cross-sectional area: an orphan phenotype with potential implications for female spinal health

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

A high priority in imaging-based research is the identification of the structural basis that confers greater risk for spinal disorders. New evidence indicates that factors related to sex influence the fetal development of the axial skeleton. Girls are born with smaller vertebral cross-sectional area compared to boys—a sexual dimorphism that is present throughout life and independent of body size. The smaller female vertebra is associated with greater flexibility of the spine that could represent the human adaptation to fetal load. It also likely contributes to the higher prevalence of spinal deformities, such as exaggerated lordosis and progressive scoliosis in adolescent girls when compared to boys, and to the greater susceptibility for spinal osteoporosis and vertebral fractures in elderly women than men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ponrartana S, Aggabao PC, Dharmavaram NL, Fisher CL, Friedlich P, Devaskar SU, Gilsanz V (2015) Sexual dimorphism in newborn vertebrae and its potential implications. J Pediatr 167:416–421

    Article  PubMed  PubMed Central  Google Scholar 

  2. Arfai K, Pitukcheewanont PD, Goran MI, Tavare CJ, Heller L, Gilsanz V (2002) Bone, muscle, and fat: sex-related differences in prepubertal children. Radiology 224:338–344

    Article  PubMed  Google Scholar 

  3. Gilsanz V, Boechat MI, Roe TF, Loro ML, Sayre JW, Goodman WG (1994) Gender differences in vertebral body sizes in children and adolescents. Radiology 190:673–677

    Article  CAS  PubMed  Google Scholar 

  4. Gilsanz V, Boechat MI, Gilsanz R, Loro ML, Roe TF, Goodman WG (1994) Gender differences in vertebral sizes in adults: biomechanical implications. Radiology 190:678–682

    Article  CAS  PubMed  Google Scholar 

  5. Bouxsein ML, Melton LJ 3rd, Riggs BL, Muller J, Atkinson EJ, Oberg AL, Robb RA, Camp JJ, Rouleau PA, McCollough CH, Khosla S (2006) Age- and sex-specific differences in the factor of risk for vertebral fracture: a population-based study using QCT. J Bone Miner Res 21:1475–1482

    Article  PubMed  Google Scholar 

  6. Ponrartana S, Fisher CL, Aggabao PC, Chavez TA, Broom AM, Wren TA, Skaggs DL, Gilsanz V (2016) Small vertebral cross-sectional area and tall intervertebral disc in adolescent idiopathic scoliosis. Pediatr Radiol 46:1424–1429

    Article  PubMed  Google Scholar 

  7. Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M (2006) Review: developmental origins of osteoporotic fracture. Osteoporos Int 17:337–347

    Article  PubMed  Google Scholar 

  8. Calkins K, Devaskar SU (2011) Fetal origins of adult disease. Curr Probl Pediatr Adolesc Health Care 41:158–176

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res 57:582–586

    Article  PubMed  Google Scholar 

  10. Antoniades L, MacGregor AJ, Andrew T, Spector TD (2003) Association of birth weight with osteoporosis and osteoarthritis in adult twins. Rheumatology (Oxford) 42:791–796

    Article  CAS  Google Scholar 

  11. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2011) Pubertal timing and body mass index gain from birth to maturity in relation with femoral neck BMD and distal tibia microstructure in healthy female subjects. Osteoporos Int 22:2689–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Godfrey K, Walker-Bone K, Robinson S, Taylor P, Shore S, Wheeler T, Cooper C (2001) Neonatal bone mass: influence of parental birthweight, maternal smoking, body composition, and activity during pregnancy. J Bone Miner Res 16:1694–1703

    Article  CAS  PubMed  Google Scholar 

  13. Scholl TO, Chen X, Stein TP (2014) Maternal calcium metabolic stress and fetal growth. Am J Clin Nutr 99:918–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Holroyd CR, Harvey NC, Crozier SR, Winder NR, Mahon PA, Ntani G, Godfrey KM, Inskip HM, Cooper C (2012) Placental size at 19 weeks predicts offspring bone mass at birth: findings from the Southampton Women’s Survey. Placenta 33:623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dennison EM, Syddall HE, Rodriguez S, Voropanov A, Day IN, Cooper C (2004) Polymorphism in the growth hormone gene, weight in infancy, and adult bone mass. J Clin Endocrinol Metab 89:4898–4903

    Article  CAS  PubMed  Google Scholar 

  16. Dennison E, Hindmarsh P, Fall C, Kellingray S, Barker D, Phillips D, Cooper C (1999) Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab 84:3058–3063

    CAS  PubMed  Google Scholar 

  17. Byberg L, Michaelsson K, Goodman A, Zethelius B, Koupil I (2014) Birth weight is not associated with risk of fracture: results from two Swedish co hort studies. J Bone Miner Res 29:2152–2160

    Article  PubMed  Google Scholar 

  18. Hallal PC, Siqueira FV, Menezes AM, Araujo CL, Norris SA, Victora CG (2009) The role of early life variables on the risk of fractures from birth to early adolescence: a prospective birth cohort study. Osteoporos Int 20:1873–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones IE, Williams SM, Goulding A (2004) Associations of birth weight and length, childhood size, and smoking with bone fractures during growth: evidence from a birth cohort study. Am J Epidemiol 159:343–350

    Article  PubMed  Google Scholar 

  20. Koo WW, Hockman EM (2000) Physiologic predictors of lumbar spine bone mass in neonates. Pediatr Res 48:485–489

    Article  CAS  PubMed  Google Scholar 

  21. Namgung R, Tsang RC (2000) Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization. Proc Nutr Soc 59:55–63

    Article  CAS  PubMed  Google Scholar 

  22. Ahmad I, Nemet D, Eliakim A, Koeppel R, Grochow D, Coussens M, Gallitto S, Rich J, Pontello A, Leo S-Y, Cooper D, Waffarn F (2010) Body composition and its components in preterm and term newborns: a cross-sectional, multimodal investigation. Am J Hum Biol 22:69–75

    Article  PubMed  PubMed Central  Google Scholar 

  23. Salle BL, Braillon P, Glorieux FH, Brunet J, Cavero E, Meunier PJ (1992) Lumbar bone mineral content measured by dual energy X-ray absorptiometry in newborns and infants. Acta Paediatr 81:953–958

    Article  CAS  PubMed  Google Scholar 

  24. Rupich RC, Specker BL, Lieuw AFM, Ho M (1996) Gender and race differences in bone mass during infancy. Calcif Tissue Int 58:395–397

    Article  CAS  PubMed  Google Scholar 

  25. Kalkwarf HJ, Zemel BS, Yolton K, Heubi JE (2013) Bone mineral content and density of the lumbar spine of infants and toddlers: influence of age, sex, race, growth, and human milk feeding. J Bone Miner Res 28:206–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ponrartana S, Aggabao PC, Chavez TA, Dharmavaram NL, Gilsanz V (2016) Changes in brown adipose tissue and muscle development during infancy. J Pediatr 173:116–121

    Article  PubMed  Google Scholar 

  27. Bruno AG, Broe KE, Zhang X, Samelson EJ, Meng CA, Manoharan R, D’Agostino J, Cupples LA, Kiel DP, Bouxsein ML (2014) Vertebral size, bone density, and strength in men and women matched for age and areal spine BMD. J Bone Miner Res 29:562–569

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gilsanz V, Skaggs DL, Kovanlikaya A, Sayre J, Loro ML, Kaufman F, Korenman SG (1998) Differential effect of race on the axial and appendicular skeletons of children. J Clin Endocrinol Metab 83:1420–1427

    CAS  PubMed  Google Scholar 

  29. Gilsanz V, Kovanlikaya A, Costin G, Roe TF, Sayre J, Kaufman F (1997) Differential effect of gender on the sizes of the bones in the axial and appendicular skeletons. J Clin Endocrinol Metab 82:1603–1607

    CAS  PubMed  Google Scholar 

  30. Carpenter RD, Carter DR (2008) The mechanobiological effects of periosteal surface loads. Biomech Model Mechanobiol 7:227–242

    Article  PubMed  Google Scholar 

  31. Biver E, Perreard Lopreno G, Hars M, van Rietbergen B, Vallee JP, Ferrari S, Besse M, Rizzoli R (2015) Occupation-dependent loading increases bone strength in men. Osteoporos Int 27:1169–1179

    Article  PubMed  Google Scholar 

  32. Trotter M, Hixon BB (1974) Sequential changes in weight, density, and percentage ash weight of human skeletons from an early fetal period through old age. Anat Rec 179:1–18

    Article  CAS  PubMed  Google Scholar 

  33. Wren TA, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, Shepherd JA, Winer KK, Gilsanz V (2014) Longitudinal tracking of dual-energy X-ray absorptiometry bone measures over 6 years in children and adolescents: persistence of low bone mass to maturity. J Pediatr 164:1280–1285 e1282

    Article  PubMed  PubMed Central  Google Scholar 

  34. Loro ML, Sayre J, Roe TF, Goran MI, Kaufman FR, Gilsanz V (2000) Early identification of children predisposed to low peak bone mass and osteoporosis later in life. J Clin Endocrinol Metab 85:3908–3918

    CAS  PubMed  Google Scholar 

  35. Middleditch A, Oliver J (2005) Normal movement. In: Middleditch A, Oliver J (eds) Functional anatomy of the spine. Butterworth Heinemann, Oxford, pp 173–208

    Google Scholar 

  36. Penha PJ, Casarotto RA, Sacco ICN, Marques AP, João SMA (2008) Qualitative postural analysis among boys and girls of seven to ten years of age. Rev Bras Fisioter 12:386–391

    Article  Google Scholar 

  37. Larsson LG, Baum J, Mudholkar GS (1987) Hypermobility: features and differential incidence between the sexes. Arthritis Rheum 30:1426–1430

    Article  CAS  PubMed  Google Scholar 

  38. Haley SM, Tada WL, Carmichael EM (1986) Spinal mobility in young children. A normative study. Phys Ther 66:1697–1703

    Article  CAS  PubMed  Google Scholar 

  39. Quatman CE, Ford KR, Myer GD, Paterno MV, Hewett TE (2008) The effects of gender and pubertal status on generalized joint laxity in young athletes. J Sci Med Sport 11:257–263

    Article  PubMed  Google Scholar 

  40. Twomey LT, Taylor JR (1987) Lumbar posture, movement and mechanics. In: Twomey LT, Taylor JR (eds) Physical therapy of the low back. Churchill Livingstone, Edinburgh, pp. 51–84

    Google Scholar 

  41. Whitcome KK, Shapiro LJ, Lieberman DE (2007) Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature 450:1075–1078

    Article  CAS  PubMed  Google Scholar 

  42. Artal R, O’Toole M (2003) Guidelines of the American College of Obstetricians and Gynecologists for exercise during pregnancy and the postpartum period. Br J Sports Med 37:6–12 discussion 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Findikcioglu K, Findikcioglu F, Ozmen S, Guclu T (2007) The impact of breast size on the vertebral column: a radiologic study. Aesthet Plast Surg 31:23–27

    Article  Google Scholar 

  44. Bonjour JP, Chevalley T (2014) Pubertal timing, bone acquisition, and risk of fracture throughout life. Endocr Rev 35:820–847

    Article  CAS  PubMed  Google Scholar 

  45. Langdahl BL, Kassem M, Moller MK, Eriksen EF (1998) The effects of IGF-I and IGF-II on proliferation and differentiation of human osteoblasts and interactions with growth hormone. Eur J Clin Investig 28:176–183

    Article  CAS  Google Scholar 

  46. Bikle DD, Tahimic C, Chang W, Wang Y, Philippou A, Barton ER (2015) Role of IGF-I signaling in muscle bone interactions. Bone 80:79–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tanner JM, Whitehouse RH, Hughes PC, Carter BS (1976) Relative importance of growth hormone and sex steroids for the growth at puberty of trunk length, limb length, and muscle width in growth hormone-deficient children. J Pediatr 89:1000–1008

    Article  CAS  PubMed  Google Scholar 

  48. Acherman JC, Hughes IA (2011) Disorders of sex development. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM (eds) Williams textbook of endocrinology. Elsevier Inc., Philadelphia, pp. 868–934

    Chapter  Google Scholar 

  49. Notelovitz M (2002) Androgen effects on bone and muscle. Fertil Steril 77(Suppl 4):S34–S41

    Article  PubMed  Google Scholar 

  50. Orwoll ES (2001) Androgens: basic biology and clinical implication. Calcif Tissue Int 69:185–188

    Article  CAS  PubMed  Google Scholar 

  51. Ross JL, Quigley CA, Cao D, Feuillan P, Kowal K, Chipman JJ, Cutler GB Jr (2011) Growth hormone plus childhood low-dose estrogen in Turner’s syndrome. N Engl J Med 364:1230–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Aynsley-Green A, Zachmann M, Prader A (1976) Interrelation of the therapeutic effects of growth hormone and testosterone on growth in hypopituitarism. J Pediatr 89:992–999

    Article  CAS  PubMed  Google Scholar 

  53. Kurtoglu S, Bastug O (2014) Mini puberty and its interpretation. Turk Pediatri Ars 49:186–191

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hiden U, Glitzner E, Hartmann M, Desoye G (2009) Insulin and the IGF system in the human placenta of normal and diabetic pregnancies. J Anat 215:60–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been E, Hershkovitz I (2004) Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine (Phila Pa 1976) 29:1755–1763

    Article  Google Scholar 

  56. Masharawi Y, Dar G, Peleg S, Steinberg N, Medlej B, May H, Abbas J, Hershkovitz I (2010) A morphological adaptation of the thoracic and lumbar vertebrae to lumbar hyperlordosis in young and adult females. Eur Spine J 19:768–773

    Article  PubMed  Google Scholar 

  57. Shefi S, Soudack M, Konen E, Been E (2013) Development of the lumbar lordotic curvature in children from age 2 to 20 years. Spine (Phila Pa 1976) 38:E602–E608

    Article  Google Scholar 

  58. Middleditch A, Oliver J (2005) Structure of the vertebral column. In: Middleditch A, Oliver J (eds) Functional anatomy of the spine. Butterworth Heinemann, Oxford, pp. 1–62

    Google Scholar 

  59. Smith AJ, O’Sullivan PB, Beales DJ, de Klerk N, Straker LM (2011) Trajectories of childhood body mass index are associated with adolescent sagittal standing posture. Int J Pediatr Obes 6:e97–106

    Article  PubMed  Google Scholar 

  60. Dolphens M, Cagnie B, Vleeming A, Vanderstraeten G, Danneels L (2013) Gender differences in sagittal standing alignment before pubertal peak growth: the importance of subclassification and implications for spinopelvic loading. J Anat 223:629–640

    Article  PubMed  PubMed Central  Google Scholar 

  61. Norton BJ, Sahrmann SA, Van Dillen FL (2004) Differences in measurements of lumbar curvature related to gender and low back pain. J Orthop Sports Phys Ther 34:524–534

    Article  PubMed  Google Scholar 

  62. National Scoliosis Foundation. In information and support. http://www.scoliosis.org/info.php. Accessed 14 Nov 2014

  63. Konieczny MR, Senyurt H, Krauspe R (2013) Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 7:3–9

    Article  PubMed  Google Scholar 

  64. Tanchev PI, Dzherov AD, Parushev AD, Dikov DM, Todorov MB (2000) Scoliosis in rhythmic gymnasts. Spine (Phila Pa 1976) 25:1367–1372

    Article  CAS  Google Scholar 

  65. Warren MP, Brooks-Gunn J, Hamilton LH, Warren LF, Hamilton WG (1986) Scoliosis and fractures in young ballet dancers. Relation to delayed menarche and secondary amenorrhea. N Engl J Med 314:1348–1353

    Article  CAS  PubMed  Google Scholar 

  66. Meyer C, Cammarata E, Haumont T, Deviterne D, Gauchard GC, Leheup B, Lascombes P, Perrin PP (2006) Why do idiopathic scoliosis patients participate more in gymnastics? Scand J Med Sci Sports 16:231–236

    Article  CAS  PubMed  Google Scholar 

  67. Hodson GC (1984) Vertebral body dimensions: an aid to diagnosis of severely progressive adolescent idiopathic scoliosis? Aust J Physiother 30:39–41

    Article  CAS  PubMed  Google Scholar 

  68. Taylor JR, Twomey LT (1984) Sexual dimorphism in human vertebral body shape. J Anat 138(Pt 2):281–286

    PubMed  PubMed Central  Google Scholar 

  69. Ishida K, Aota Y, Mitsugi N, Kono M, Higashi T, Kawai T, Yamada K, Niimura T, Kaneko K, Tanabe H, Ito Y, Katsuhata T, Saito T (2015) Relationship between bone density and bone metabolism in adolescent idiopathic scoliosis. Scoliosis 10:19

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pourabbas Tahvildari B, Erfani MA, Nouraei H, Sadeghian M (2014) Evaluation of bone mineral status in adolescent idiopathic scoliosis. Clin Orthop Surg 6:180–184

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sadat-Ali M, Al-Othman A, Bubshait D, Al-Dakheel D (2008) Does scoliosis causes low bone mass? A comparative study between siblings. Eur Spine J 17:944–947

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li XF, Li H, Liu ZD, Dai LY (2008) Low bone mineral status in adolescent idiopathic scoliosis. Eur Spine J 17:1431–1440

    Article  PubMed  PubMed Central  Google Scholar 

  73. Cheng JC, Guo X, Sher AH (1999) Persistent osteopenia in adolescent idiopathic scoliosis. A longitudinal follow up study. Spine (Phila Pa 1976) 24:1218–1222

    Article  CAS  Google Scholar 

  74. Thomas KA, Cook SD, Skalley TC, Renshaw SV, Makuch RS, Gross M, Whitecloud TS 3rd, Bennett JT (1992) Lumbar spine and femoral neck bone mineral density in idiopathic scoliosis: a follow-up study. J Pediatr Orthop 12:235–240

    Article  CAS  PubMed  Google Scholar 

  75. Cook SD, Harding AF, Morgan EL, Nicholson RJ, Thomas KA, Whitecloud TS, Ratner ES (1987) Trabecular bone mineral density in idiopathic scoliosis. J Pediatr Orthop 7:168–174

    Article  CAS  PubMed  Google Scholar 

  76. Hung VW, Qin L, Cheung CS, Lam TP, Ng BK, Tse YK, Guo X, Lee KM, Cheng JC (2005) Osteopenia: a new prognostic factor of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 87:2709–2716

    CAS  PubMed  Google Scholar 

  77. Wren TA, Liu X, Pitukcheewanont P, Gilsanz V (2005) Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab 90:1925–1928

    Article  CAS  PubMed  Google Scholar 

  78. Fournier PE, Rizzoli R, Slosman DO, Buchs B, Bonjour JP (1994) Relative contribution of vertebral body and posterior arch in female and male lumbar spine peak bone mass. Osteoporos Int 4:264–272

    Article  CAS  PubMed  Google Scholar 

  79. Wren TA, Kim PS, Janicka A, Sanchez M, Gilsanz V (2007) Timing of peak bone mass: discrepancies between CT and DXA. J Clin Endocrinol Metab 92:938–941

    Article  CAS  PubMed  Google Scholar 

  80. Gilsanz V, Perez FJ, Campbell PP, Dorey FJ, Lee DC, Wren TA (2009) Quantitative CT reference values for vertebral trabecular bone density in children and young adults. Radiology 250:222–227

    Article  PubMed  PubMed Central  Google Scholar 

  81. Marcus R, Kosek J, Pfefferbaum A, Horning S (1983) Age-related loss of trabecular bone in premenopausal women: a biopsy study. Calcif Tissue Int 35:406–409

    Article  CAS  PubMed  Google Scholar 

  82. Merz WA, Schenk RK (1970) A quantitative histological study on bone formation in human cancellous bone. Acta Anat (Basel) 76:1–15

    Article  CAS  Google Scholar 

  83. Mosekilde L (1990) Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 11:67–73

    Article  CAS  PubMed  Google Scholar 

  84. Cooper C, Eriksson JG, Forsen T, Osmond C, Tuomilehto J, Barker DJ (2001) Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 12:623–629

    Article  CAS  PubMed  Google Scholar 

  85. Ensrud KE (2013) Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci 68:1236–1242

    Article  PubMed  Google Scholar 

  86. Old JL, Calvert M (2004) Vertebral compression fractures in the elderly. Am Fam Physician 69:111–116

    PubMed  Google Scholar 

  87. Odvina CV, Wergedal JE, Libanati CR, Schulz EE, Baylink DJ (1988) Relationship between trabecular vertebral body density and fractures: a quantitative definition of spinal osteoporosis. Metabolism 37:221–228

    Article  CAS  PubMed  Google Scholar 

  88. Gilsanz V, Loro ML, Roe TF, Sayre J, Gilsanz R, Schulz EE (1995) Vertebral size in elderly women with osteoporosis. Mechanical implications and relationship to fractures. J Clin Invest 95:2332–2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6:1–7

    Article  CAS  PubMed  Google Scholar 

  90. Snyder BD, Piazza S, Edwards WT, Hayes WC (1993) Role of trabecular morphology in the etiology of age-related vertebral fractures. Calcif Tissue Int 53(Suppl 1):S14–S22

    Article  PubMed  Google Scholar 

  91. Cooper C (1993) The epidemiology of fragility fractures: is there a role for bone quality? Calcif Tissue Int 53(Suppl 1):S23–S26

    Article  PubMed  Google Scholar 

  92. Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 14:606–610

    Article  CAS  Google Scholar 

  93. Mosekilde L (1986) Normal vertebral body size and compressive strength: relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7:207–212

    Article  CAS  PubMed  Google Scholar 

  94. Ruyssen-Witrand A, Gossec L, Kolta S, Dougados M, Roux C (2007) Vertebral dimensions as risk factor of vertebral fracture in osteoporotic patients: a systematic literature review. Osteoporos Int 18:1271–1278

    Article  CAS  PubMed  Google Scholar 

  95. Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R (2014) Tracking of environmental determinants of bone structure and strength development in healthy boys: an eight-year follow up study on the positive interaction between physical activity and protein intake from prepuberty to mid-late adolescence. J Bone Miner Res 29:2182–2192

    Article  CAS  PubMed  Google Scholar 

  96. Turner CH, Robling AG (2003) Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev 31:45–50

    Article  PubMed  Google Scholar 

  97. Weeks BK, Beck BR (2008) The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos Int 19:1567–1577

    Article  CAS  PubMed  Google Scholar 

  98. Specker BL (2006) Influence of rapid growth on skeletal adaptation to exercise. J Musculoskelet Neuronal Interact 6:147–153

    CAS  PubMed  Google Scholar 

  99. Mosekilde L (2000) Age-related changes in bone mass, structure, and strength—effects of loading. Z Rheumatol 59(Suppl 1):1–9

    Article  PubMed  Google Scholar 

  100. Oura P, Paananen M, Niinimaki J, Tammelin T, Herrala S, Auvinen J, Korpelainen R, Junno JA, Karppinen J (2016) Effects of leisure-time physical activity on vertebral dimensions in the Northern Finland Birth Cohort 1966. Sci Rep 6:27844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Dowthwaite JN, Rosenbaum PF, Scerpella TA (2011) Mechanical loading during growth is associated with plane-specific differences in vertebral geometry: a cross-sectional analysis comparing artistic gymnasts vs. non-gymnasts. Bone 49:1046–1054

    Article  PubMed  PubMed Central  Google Scholar 

  102. Been E, Li L, Hunter DJ, Kalichman L (2011) Geometry of the vertebral bodies and the intervertebral discs in lumbar segments adjacent to spondylolysis and spondylolisthesis: pilot study. Eur Spine J 20:1159–1165

    Article  PubMed  Google Scholar 

  103. Jacobsen S, Sonne-Holm S, Rovsing H, Monrad H, Gebuhr P (2007) Degenerative lumbar spondylolisthesis: an epidemiological perspective: the Copenhagen Osteoarthritis Study. Spine (Phila Pa 1976) 32:120–125

    Article  Google Scholar 

  104. Mehta VA, Amin A, Omeis I, Gokaslan ZL, Gottfried ON (2015) Implications of spinopelvic alignment for the spine surgeon. Neurosurgery 76(Suppl 1):S42–S56 discussion S56

    Article  Google Scholar 

  105. Chung SB, Lee S, Kim H, Lee SH, Kim ES, Eoh W (2012) Significance of interfacet distance, facet joint orientation, and lumbar lordosis in spondylolysis. Clin Anat 25:391–397

    Article  PubMed  Google Scholar 

  106. Oh YM, Choi HY, Eun JP (2013) The comparison of sagittal spinopelvic parameters between young adult patients with L5 spondylolysis and age-matched control group. J Korean Neurosurg Soc 54:207–210

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ferrero E, Ould-Slimane M, Gille O, Guigui P (2015) Sagittal spinopelvic alignment in 654 degenerative spondylolisthesis. Eur Spine J 24:1219–1227

    Article  PubMed  Google Scholar 

  108. Wybier M, Bossard P (2013) Musculoskeletal imaging in progress: the EOS imaging system. Joint Bone Spine 80:238–243

    Article  PubMed  Google Scholar 

  109. Cheng JC, Tang NL, Yeung HY, Miller N (2007) Genetic association of complex traits: using idiopathic scoliosis as an example. Clin Orthop Relat Res 462:38–44

    Article  PubMed  Google Scholar 

  110. Wise CA, Gao X, Shoemaker S, Gordon D, Herring JA (2008) Understanding genetic factors in idiopathic scoliosis, a complex disease of childhood. Curr Genomics 9:51–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu XY, Wang L, Yu B, Zhuang QY, Wang YP (2015) Expression signatures of long noncoding RNAs in adolescent idiopathic scoliosis. Biomed Res Int 2015:276049

    PubMed  PubMed Central  Google Scholar 

  112. Mitchell JA, Cousminer DL, Zemel BS, Grant SF, Chesi A (2016) Genetics of pediatric bone strength. Bonekey Rep 5:823

    Article  PubMed  Google Scholar 

  113. Gao X, Gotway G, Rathjen K, Johnston C, Sparagana S, Wise CA (2014) Genomic analyses of patients with unexplained early onset scoliosis. Spine Deform 2:324–332

    Article  PubMed Central  Google Scholar 

  114. Haller G, Alvarado D, McCall K, Yang P, Cruchaga C, Harms M, Goate A, Willing M, Morcuende JA, Baschal E, Miller NH, Wise C, Dobbs MB, Gurnett CA (2016) A polygenic burden of rare variants across extracellular matrix genes among individuals with adolescent idiopathic scoliosis. Hum Mol Genet 25:202–209

    Article  CAS  PubMed  Google Scholar 

  115. van der Meulen MC, Beaupre GS, Carter DR (1993) Mechanobiologic influences in long bone cross-sectional growth. Bone 14:635–642

    Article  PubMed  Google Scholar 

  116. Specker B, Thiex NW, Sudhagoni RG (2015) Does exercise influence pediatric bone? A systematic review. Clin Orthop Relat Res 473:3658–3672

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kanis JA, Melton LJ 3rd, Christiansen C, Johnston CC, Khaltaev N (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Gilsanz.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wren, T.A.L., Ponrartana, S. & Gilsanz, V. Vertebral cross-sectional area: an orphan phenotype with potential implications for female spinal health. Osteoporos Int 28, 1179–1189 (2017). https://doi.org/10.1007/s00198-016-3832-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3832-z

Keywords

Navigation